Simulation of a Standing-Wave Free-Electron Laser

PDF Version Also Available for Download.

Description

The standing-wave free-electron laser (FEL) differs from a conventional linear-wiggler microwave FEL in using irises along the wiggler to form a series of standing-wave cavities and in reaccelerating the beam between cavities to maintain the average energy. The device has been proposed for use in a two-beam accelerator (TBA) because microwave power can be extracted more effectively than from a traveling-wave FEL. The standing-wave FEL is modeled in the continuum limit by a set of equations describing the coupling of a one-dimensional beam to a TE{sub 01} rectangular-waveguide mode. Analytic calculations and numerical simulations are used to determine the time ... continued below

Creation Information

Sharp, W.M.; Sessler, A.M.; Whittum, D.H. & Wurtele, J.S. September 1, 1990.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The standing-wave free-electron laser (FEL) differs from a conventional linear-wiggler microwave FEL in using irises along the wiggler to form a series of standing-wave cavities and in reaccelerating the beam between cavities to maintain the average energy. The device has been proposed for use in a two-beam accelerator (TBA) because microwave power can be extracted more effectively than from a traveling-wave FEL. The standing-wave FEL is modeled in the continuum limit by a set of equations describing the coupling of a one-dimensional beam to a TE{sub 01} rectangular-waveguide mode. Analytic calculations and numerical simulations are used to determine the time variation of the reacceleration field and the prebunching required so that the final microwave energy is the same in all cavities. The microwave energy and phase are found to be insensitive to modest spreads in the beam energy and phase and to errors in the reacceleration field and the beam current, but the output phase appears sensitive to beam-energy errors and to timing jitter.

Source

  • 1990 Linear Accelerator Conference, Albuquerque, NM, 09/10-14/1990

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1083E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 940784
  • Archival Resource Key: ark:/67531/metadc895401

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1990

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 11:50 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sharp, W.M.; Sessler, A.M.; Whittum, D.H. & Wurtele, J.S. Simulation of a Standing-Wave Free-Electron Laser, article, September 1, 1990; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc895401/: accessed May 27, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.