The longitudinal stability of intense particle bunches is investigated theoretically in the limit of small wall resistivity compared to total reactance. It is shown that both in the absence of resistivity and to lowest order in the resistance that an intense bunch is stable against longitudinal collective modes. An expression is derived for the lowest order instability rate. Application of these results are made to drivers for heavy ion inertial fusion.
Publisher Info:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
Place of Publication:
Berkeley, California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
The longitudinal stability of intense particle bunches is investigated theoretically in the limit of small wall resistivity compared to total reactance. It is shown that both in the absence of resistivity and to lowest order in the resistance that an intense bunch is stable against longitudinal collective modes. An expression is derived for the lowest order instability rate. Application of these results are made to drivers for heavy ion inertial fusion.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Channell, P. J.; Sessler, A. M. & Wurtele, J. S.The Longitudinal Stability of Intense Non-Relativistic Particle Bunches in Resistive Structures,
article,
February 1, 1981;
Berkeley, California.
(digital.library.unt.edu/ark:/67531/metadc895394/:
accessed April 23, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.