Programmability of the HPCS Languages: A Case Study with a Quantum Chemistry Kernel (Extended Version)

PDF Version Also Available for Download.

Description

As high-end computer systems present users with rapidly increasing numbers of processors, possibly also incorporating attached co-processors, programmers are increasingly challenged to express the necessary levels of concurrency with the dominant parallel programming model, Fortran+MPI+OpenMP (or minor variations). In this paper, we examine the languages developed under the DARPA High-Productivity Computing Systems (HPCS) program (Chapel, Fortress, and X10) as representatives of a different parallel programming model which might be more effective on coming high-performance systems. The application used in this study is the Hartree-Fock method from quantum chemistry, which combines access to distributed data with a task-parallel algorithm and is ... continued below

Creation Information

Shet, Aniruddha G; Elwasif, Wael R; Harrison, Robert J & Bernholdt, David E April 1, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

As high-end computer systems present users with rapidly increasing numbers of processors, possibly also incorporating attached co-processors, programmers are increasingly challenged to express the necessary levels of concurrency with the dominant parallel programming model, Fortran+MPI+OpenMP (or minor variations). In this paper, we examine the languages developed under the DARPA High-Productivity Computing Systems (HPCS) program (Chapel, Fortress, and X10) as representatives of a different parallel programming model which might be more effective on coming high-performance systems. The application used in this study is the Hartree-Fock method from quantum chemistry, which combines access to distributed data with a task-parallel algorithm and is characterized by significant irregularity in the computational tasks. We present several different implementation strategies for load balancing of the task parallel computation, as well as distributed array operations, in each of the three languages. We conclude that the HPCS languages provide a wide variety of mechanisms for expressing parallelism, which can be combined at multiple levels, making them quite expressive for this problem.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2008/011
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/931141 | External Link
  • Office of Scientific & Technical Information Report Number: 931141
  • Archival Resource Key: ark:/67531/metadc895393

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 28, 2016, 2:30 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Shet, Aniruddha G; Elwasif, Wael R; Harrison, Robert J & Bernholdt, David E. Programmability of the HPCS Languages: A Case Study with a Quantum Chemistry Kernel (Extended Version), report, April 1, 2008; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc895393/: accessed August 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.