
UCRL-TR-235913

Passive Detection of Narrowband
Sources Using a Sensor Array

D. H. Chambers, J. V. Candy, B. L. Guidry

October 29, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

PASSIVE DETECTION OF NARROWBAND SOURCES USING

A SENSOR ARRAY

D. H. Chambers, J. V. Candy, and B. L. Guidry
Lawrence Livermore National Laboratory

Livermore, CA 94551

October 24, 2007

1 Introduction

In this report we derive a model for a highly scattering medium, implemented as a set of MATLAB func-
tions. This model is used to analyze an approach for using time-reversal to enhance the detection of a
single frequency source in a highly scattering medium. The basic approach is to apply the singular value
decomposition to the multistatic response matrix for a time-reversal array system. We then use the array
in a purely passive mode, measuring the response to the presence of a source. The measured response is
projected onto the singular vectors, creating a time-reversal pseudo-spectrum. We can then apply standard
detection techniques to the pseudo-spectrum to determine the presence of a source. If the source is close to
a particular scatterer in the medium, then we would expect an enhancement of the inner product between
the array response to the source with the singular vector associated with that scatterer. In this note we
begin by deriving the Foldy-Lax model of a highly scattering medium, calculate both the field emitted by
the source and the multistatic response matrix of a time-reversal array system in the medium, then describe
the initial analysis approach.

1.1 Foldy-Lax medium model

The Foldy-Lax model of a medium begins with assuming that all scatterers in the medium are point-like
particles (negligible size). The scattered field ψs from a point object at position r0 is given by

ψs(r; r0) = G(r; r0)q0ψT (r0) , (1)

where q0 is the scatterer strength, ψT (r0) is the total field at the scatterer, and G(r; r0) is the Green’s
function for the medium. The scatterer strength q0 is a complex number related to the cross-section of
the point object. Since the scattered field cannot be stronger than the field incident on the scatterer, the
strength satisfies the condition |q0| ≤ 1.

Now for J scatterers, we can write the scattered field as the sum over the field scattered by each point:

ψs(r) =
J∑

j=1

qjψT (rj)G(r; rj) . (2)

The total field is the sum of the scattered field and the incident field produced by all the sources in the
problem domain, ψT (r) = ψs(r) + ψi(r). This expression is valid for any position r except for the positions

1

of the scatterers themselves, rj . When r = rj , we must omit the component of the scattered field produced
by the jth scatterer from the expression for ψs, 2. Let ψTj = ψT (rj), then we can write

ψTj = ψi(rj) +
J∑

k=1
k 6=j

qkG(rj ; rk)ψTk . (3)

A simple rearrangement turns this into a matrix equation for the coefficients ψTj :

ψTj −
J∑

k=1
k 6=j

qkG(rj ; rk)ψTk = ψi(rj) . (4)

Once the coefficients are known the scattered field at any point r 6= rj is

ψs(r) =
J∑

j=1

qjψTjG(r; rj) . (5)

These two equations complete the specification of the Foldy-Lax propagation medium model. The advantage
of this model is that it includes all orders of multiple scattering and can be easily implemented in MATLAB.

We have been able to express the Foldy-Lax medium model without specifying a particular Green’s
function to describe the background medium (without the scatterers). For the case of a two-dimensional
medium, the Green’s function is

G(r; r0) =
i

4
H

(1)
0 (k0|r− r0|) . (6)

For a three-dimensional medium, the Green’s function is

G(r; r0) =
exp(ik0|r − r0|)

4π|r − r0|
. (7)

These have been implemented in the initial MATLAB implementation of the model. Other Green’s functions
can also be implemented if required.

We will consider the following simple scattering problem to motivate our approach to the tone detection
using time-reversal. Suppose we have a horizontal transceiver array of L = 21-sensors with a tonal source
located in 3D-space at position, r = (−8, 2, 3) meters and a simple field generated by NS = 10 scatterers as
shown in Fig. B.

1.2 Implementation for tone problem

The Foldy-Lax model for a single radiating point source at position rs is a direct implementation of the
above formulas. The total field is the sum of the incident field ψi(r) = AG(r; rs), and the scattered field
calculated from equations 4 and 5. The factor A is the amplitude of the source. MATLAB functions have
been written that perform these calculations. The function field inc calculates the incident field ψi for a
point source using whichever Green’s function is appropriate, eqn. 6 or eqn. 7. The function solvefl solves
the basic Foldy-Lax model equation, eqn. 4, for the field at the scattering points. Function fieldfl uses this
result to calculate the scattered field at any point in space using eqn. 5.

The Foldy-Lax model for the multistatic response matrix of a time-reversal system requires more cal-
culation but is straightforward ([1]-[3]). Consider an array system consisting of a transmit subarray with
elements positioned at an : n = 1, 2, . . . , N , and a receive array with elements at bm : m = 1, 2, . . . ,M . The
multistatic response matrix K is an M ×N matrix in which the nth column is the received amplitudes when

2

0

5

10

−4

−2

0

2

4
−4

−2

0

2

4

X

Array, source, and scatterer positions

Y

Z

Figure 1: Simple 3D-Scattering Problem Geometry: 21-element crossed transceiver array (blue); source
located at: r = (6, 1, 1.5) with 14 scatterers randomly located (red circles). Diameters of red circles are
proportional to scattering strengths.

3

0 5 10 15 20 25
10

−20

10
−15

10
−10

10
−5

10
0

SVD Index

S
in

gu
la

r
va

lu
e

Singular values − crossed array − 14 scatterers

Figure 2: Spectrum of singular values for a 21-element crossed array with 14 scatterers.

the nth transmitter is activated. The elements of the matrix are calculated by solving equations 4 and 5 for
each transmit element:

Kmn =
∑

j=1

Jqjψ
(n)
Tj G(bm; an) , (8)

ψ
(n)
Tj −

J∑

k=1
k 6=j

qkG(rj ; rk)ψ(n)
Tk = G(rj ; an) . (9)

The MATLAB function make Kfl calculates the multistatic response matrix using these relations. For our
simple scattering problem we show the results of performing the SVD operation on the MRM in Fig. 2[4].
Note the sharp break in the spectrum after the tenth singular value.

2 Sensor Array Detection of Narrowband Signals

In this section, we review the generic theory of signal detection which will be employed throughout this effort
([5]-[10]). Here we assume multichannel arrays are our measurement systems and tacitly assume additive
Gaussian noise as our major contaminant. We will also assume that the detection problem will be binary to
decide if the narrowband signal is present or not and examine the sensor measurement outputs individually.

With this in mind we define the basic decision problem as: Given a set of L-element array measurements,
Y(ω), Decide whether or not a particular narrowband signal, S(ω), is present, that is, test the generic
hypotheses

4

Ho : Y(ω) = N(ω)

H1 : Y(ω) = S(ω) + N(ω) (10)

where S, N, Y ∈ CL×1, N ∼ N (0,RNN(ω)) and the signal vector, S is considered deterministic, but
unknown. The solution to this problem can be obtained by applying the Neyman-Pearson theorem leading
to the likelihood ratio ([5], [6], [8]) and is given by the ratio of probabilities

L(ω) =
Pr(Y(ω)|H1)
Pr(Y(ω)|Ho)

H1

>
<
Ho

τ (11)

Under the Gaussian noise assumptions the required probabilities are simply multivariate normal distrib-
utions and therefore

L(ω) =
exp

(
− 1

2 (Y(ω) − S(ω))† R−1
NN (ω) (Y(ω) − S(ω))

)

exp
(
− 1

2Y(ω)†R−1
NN (ω)Y(ω)

)
H1

>
<
Ho

τ (12)

If we take the natural logarithm of both sides, we obtain the log-likelihood ratio

Λ(ω) : = lnL(Θ) = ln Pr(Y(ω)|H1) − ln Pr(Y(ω)|Ho)

H1

>
<
Ho

ln τ

Λ(ω) = −1
2

(Y(ω) − S(ω))†R−1
NN (ω) (Y(ω) − S(ω)) +

1
2
Y†(ω)R−1

NN (ω)Y(ω)

(13)

Expanding the log-likelihood and performing the indicated operations gives

Λ(ω) =
1
2
Y†(ω)R−1

NN (ω)Y(ω) − 1
2
[
Y†(ω)R−1

NN (ω)Y(ω)

− 2S†(ω)R−1
NN (ω)Y(ω) + S†(ω)R−1

NN (ω)S(ω)
]

or moving all of the “knowns” into the threshold gives the resulting decision function

Λ(ω) = S†(ω)R−1
NN (ω)Y(ω)

H1

>
<
Ho

ln τ +
1
2
S†(ω)R−1

NN (ω)S(ω) =: Tω (14)

This result is the classical matched filter solution to this multichannel array problem ([7], [8]-[13]). We
will investigate this relation for a variety of signal models (orthogonal, subspace and matching vector) and
constrain the noise covariance to be white with RNN (ω) = σ2I in subsequent sections. But this is the basic
result we apply over and over throughout this work.

5

2.1 Orthogonal Decomposition of the Measurement Space

One of the keys to the time-reversal approach is to decompose the measurement space into orthogonal
subspaces: one for the signals and one for the noise following the approach of Schmidt [10] as in [3]. We
assume that we have measured the field of the environment with a sensor array using any signals (pulses)
transmitted systematically on each transmitter, one at a time, and received on the entire receiver array. In
this manner the measurement field (space) can be characterized by its multistatic response matrix (MRM),
K(ω). Hence, the j-th column of this matrix is the measured response at the receiver array corresponding to
the j-th transmitter element. We can think of this as the scattered field received on the L-dimensional array
of sensors generated by Ns-scatterers (signals). The MRM can be decomposed into orthogonal subspaces by
performing a singular value decomposition (SVD) as

K(ω) = U(ω)Σ(ω)V†(ω) =
L∑

`=1

σ2
` (ω)u`(ω)v†

`(ω) (15)

where Σ is the diagonal, L × L source matrix consisting of singular values associated with the NS-point
scatterers (signals) and (L−NS)-noise vectors such that

Σ =

ΣS+N (ω) | 0
− − −
0 | ΣN (ω)

 (16)

for ΣS+N (ω) ∈ CNS×NS ; ΣN(ω) ∈ C(L−NS)×(L−NS) with singular values defined by

Σ`(ω) =

{ σ2
S(`) + σ2(`) ` ≤ NS

σ2(`) ` > NS

(17)

which defines the orthogonal decomposition of the MRM (measurement space) into scatterer (signal) and
noise subspaces. Using these submatrices we can write

K(ω) = [US(ω) | U(ω)]

ΣS+N (ω) | 0
− − −
0 | ΣN (ω)

V†
S(ω)
−−

V†(ω)

 (18)

or

K(ω) = US(ω)ΣS+N (ω)V†
S(ω) + U(ω)ΣN (ω)V†(ω)

=
NS∑

`=1

σ2
S(`)u`(ω)v†

`(ω) +
L∑

`=L−NS

σ2(`)u`(ω)v†
`(ω) (19)

Thus, if we obtain knowledge of the number of scatterers (signal) (NS), then we can utilize this information
in a detection scheme—the objective of this effort. Recall Fig. 2 as an example which shows the orthogonal
decomposition for the simple scattering problem.

2.2 Tonal Detection using a Time-Reversal Motivated Signal Decomposition

In this section we discuss the development of a tonal detection motivated by the time-reversal decomposition
method developed by Prada [3]. We first define the multistatic response matrix, K(ω), which has evolved from

6

the Foldy-Lax scattering model (see Sec.) and is dictated by a set of transmitting and receiving arrays which
we define as the measurement space. We approach the problem by performing an orthogonal decomposition
exploring scattering measurements. Once obtained an orthogonal decomposition of the measurement space
is performed enabling the development of a set of orthonormal “signal vectors” that are then used in a binary
detection scheme.

2.3 Orthogonal Signal Model Detection

We assume that the measurement space has been orthogonally decomposed to produce an orthogonal signal
model such that a binary decision problem is to be solved for each of the individual component orthogonal
signal vectors, that is,

Ho : Y(ω) = N(ω)

H1 : Y(ω) = u`(ω) + N(ω) (20)

where U, N, Y ∈ CL×1, N ∼ N (0,RNN (ω)) and u`(ω) is a left-eigenvector obtain from the orthogonal
decomposition of the measurement space (see Eq. 18). Here we use the so-called multistatic response
matrix, K(ω) ∈ CL×L such that [3]

K(ω) = U(ω)Σ(ω)V†(ω) (21)

with u`(ω) the `-th column of U(ω) ∈ CL×L 3 U(ω)U†(ω) = I with inner product, < u`(ω),uk(ω) >=
u†

`(ω)u`(ω) = δ`,k.
Solving the detection problem becomes a sequence of binary hypothesis tests using the Neyman-Pearson

criterion [6] leading to the `-th log-likelihood ratio for Gaussian vectors with different means (0 or u`) and
the identical covariance matrix, RNN(ω). Therefore, we have

Λ`(ω) = −1
2

(Y(ω) − u`(ω))† R−1
NN(ω) (Y(ω) − u`(ω)) +

1
2
Y†(ω)R−1

NN (ω)Y(ω) (22)

Expanding and cancelling like terms, we obtain the well-known matched-filter result [7] as in Sec. 2.1.

Λ`(ω) = u†
`(ω)R−1

NN (ω)Y(ω)) − 1
2
u†

`(ω)R−1
NNu`(ω)

H1

>
<
Ho

ln τω (23)

Moving all known terms into the threshold (right-hand side of the inequality) gives the log-likelihood orthog-
onal signal detector as

Λ`(ω) = u†
`(ω)R−1

NN(ω)Y(ω))

H1

>
<
Ho

ln τω +
1
2
u†

`(ω)R−1
NN(ω)u`(ω); ` = 1, · · · , L (24)

or simply

Λ`(ω)

H1

>
<
Ho

T`(ω) for ` = 1, · · · , L (25)

7

Now let us assume without loss of generality1 that the noise is white with covariance, RNN (ω) = σ2I .
Thus, the detector simplifies to

u†
`(ω)Y(ω)

/
σ2

H1

>
<
Ho

ln τω +
1

2σ2
u†

`(ω)u`(ω); ` = 1, · · · , L (26)

or multiplying by σ2 and using the orthonormality of the signal vectors gives

Λ`(ω) = u†
`(ω)Y(ω)

H1

>
<
Ho

σ2 ln τω +
1
2

for ` = 1, · · · , L (27)

and therefore

Λ`(ω)

H1

>
<
Ho

T (ω) (28)

with T (ω) = T`(ω) = σ2 ln τω + 1
2 ∀` (fixed threshold).

Thus, with the log-likelihood as our detection statistic under the Neyman-Pearson criterion, we can
calculate the detection and false alarm probabilities as

PFA(`) =
∫ ∞

Λ>T
Pr (Λ`(ω)|Ho) dΛ` (29)

and
PDET (`) =

∫ ∞

Λ>T
Pr (Λ`(ω)|H1) dΛ` (30)

The log-likelihood is Gaussian distributed in this case, since it is just a weighted (by u`(ω)) sum of jointly
Gaussian variates (Y(ω)). Therefore, we have the following statistics based on the conditional Gaussian
distribution (see [7] for details)

E{Λ`(ω)|Ho} = E{u†
`(ω)Y(ω)} = E{u†

`(ω)N(ω)} = 0

E{Λ`(ω)|H1} = E{u†
`(ω) (u`(ω) + N(ω))} = E{u†

`(ω)u`(ω)} = 1
(31)

with the corresponding variance under both hypothesis given by (Ho|1)

Var(Λ`(ω)|Ho|1) = Var
(
u†

`(ω)Y(ω)|Ho|1

)
= σ2 (32)

and therefore we have the following Gaussian distributions for the log-likelihood

Pr (Λ`(ω)|Ho) ∼ N (0, σ2) and Pr (Λ`(ω)|H1) ∼ N (1, σ2) (33)

We can now calculate the required probabilities for detection performance as [8]

PFA(`) =
∫ ∞

Λ(ω)>T (ω)

Pr (Λ`(ω)|Ho) dΛ`(ω) =
∫ ∞

Λ(ω)>T (ω)

1
σ
√

2π
e−Λ2

`(ω)/2σ2
dΛ`(ω) (34)

1Correlated noise can be processed first through a whitening transformation (see [7] for details).

8

PDET (`) =
∫ ∞

Λ(ω)>T (ω)

Pr (Λ`(ω)|H1) dΛ` =
∫ ∞

Λ(ω)>T (ω)

1
σ
√

2π
e−(Λ`(ω)−1)2/2σ2

dΛ`(ω) (35)

Both of these expressions can be calculated (in MATLAB) by using the complimentary error function
(erfc) defined by

erfc(β) = Qc(β) =
2√
π

∫ ∞

β

e−α2
dα (36)

For the PFA we define α = Λ`(ω)/σ
√

2 and therefore dα = dΛ`(ω)/σ
√

2 with multiplication factor,√
8 = 2

√
2 and we have then

PFA(`) =
1

σ
√

8

(√
8√
2π

)∫ ∞

Λ(ω)>T (ω)

e−Λ2
` (ω)/2σ2

dΛ`(ω)

=
√

2√
8

[
2√
π

∫ ∞

β

e−α2
dα

]
=

1
2
erfc(β) (37)

or

PFA(`) =
1
2
QC

(
T (ω)
σ
√

2

)
=

1
2
QC

(
σ√
2

ln τω +
1

2σ
√

2

)
(38)

To obtain the required threshold, τω , we solve this equation to obtain

τω = exp
{

1
σ2

[
σ
√

2Q−1
C (2PFA(`)) − 1

2

]}
(39)

Finally, the detection probability must satisfy the following relations: α = (Λ`(ω)−1)/σ
√

2 and therefore
dα = dΛ`(ω)/σ

√
2 with Λ`(ω) − 1 = T`(ω) − 1 = σ2 ln τω + 1

2 − 1 = σ2 ln τω − 1
2 and we have

PDET (`) =
1
2
QC

(
σ√
2

ln τω − 1
2σ

√
2

)
(40)

For a signal-to-noise ratio (SNR) of 0dB, we generate the following receiver operating characteristic curve
(ROC) and correponding threshold (versus PFA curve) for design shown in Fig. 3

For the simple scattering problem at 0 dB we chose the following parameters: PDET = 0.8, PFA = 0.29,
Tω = 0.9 and ran the detector over the synthesized data. The results are shown in Fig. 4 where we see
the tonal source was detected from sensor number 7 (7-th singular vector). This completes the section on
orthogonal signal detectors, next we consider a subspace approach using taking the decompositions one-step
further.

2.4 Orthogonal Signal Subspace Model Detection

In this section we use the idea of orthogonal signal models developed previously but extend it slightly to
incorporate both signal and noise subspaces. Although similar to the previous detector, the idea of orthogonal
subspace projections is used with the anticipation that this scheme may impact future efforts. We start out as
before with the orthogonal decomposition of the measurement space but use the subspace decompositions into
signal and noise subspaces. That is, we decompose the projection operator into signal and noise components
as in Eq. 19 with U(ω) = [US(ω) | UN (ω)] with the corresponding projection operators: PS(ω) and P (ω).
As the measured data vector arrives from the array it can be projected into both subspaces by the operation

PS(ω)Y(ω) = US(ω)U†
S(ω)Y(ω) and P (ω)Y(ω) = U(ω)U†(ω)Y(ω) (41)

Define a new measurement, say Z(ω), such that,

9

Figure 3: Receiver operating curve (ROC) and corresponding Threshold vs. PFA relations for Orthogonal
Signal Detector designs.

10

Figure 4: Orthogonal Signal Model Detection for Simple Scattering Problem: 7-th singular value detected.

11

Z(ω) = PS(ω)Y(ω) + P (ω)Y(ω) = [PS(ω) + P (ω)]Y(ω) = Y(ω) (42)

which follows from the properties of the projection operations [5]. Therefore, because of this equivalence, we
can infer from the basic Neyman-Pearson solution to the detection problem in white Gaussian noise (WGN)
that the log-likelihood ratio can also be decomposed in terms of signal and noise subspaces, that is,

Λ(ω) = ΛS(ω) + Λ(ω) = S†(ω)R−1
NN(ω)Y(ω)

= S†(ω)R−1
NN(ω) [PS(ω) + P (ω)]Y(ω) (43)

giving

ΛS(ω) = S†(ω)R−1
NN(ω)PS(ω)Y(ω) and Λ(ω) = S†(ω)R−1

NN(ω)P (ω)Y(ω) (44)

Clearly, we can select a signal or noise subspace detector over the orthogonal signal detector, if we know
that: (1) the source resides in either space; (2) one space has higher signal levels than the other; and (3)
there is some advantage to perform a subspace rather than full array space projection as in the previous
section.

The detection statistics remain the same in the WGN case, that is, following the derivations of the
previous section, we can develop the ROC and detection thresholds. We applied the detector to the same
problem as in the previous section with the results shown in Fig. 5. Here we chose the same threshold levels
as before with the numbers of signals selected as NS = 7 and therefore (L−NS = 14). In this case the signal
resides in the signal subspace and the detection performance is identical to the orthogonal signal detector.

This completes the section on orthogonal signal subspace detectors, next we consider a classical approach
using matched-field processors to detect and localize the tonal signal.

3 Classical Matched-Field Detection

These detection techniques can be generalized by using “matching” vectors generated by a forward propa-
gation model. The technique which has evolved from the work of Hinich [14] and Bucker [15] and is called
matched-field processing (MFP) ([16], [17]). Here a set of (passive) sensor array measurements sampling the
field are compared to an equivalent set generated by a forward propagation model producing a corresponding
matching (field) vector under an assumed source position. The vectors are compared by producing a statistic
which generates the corresponding pixel value. Localization can be performed by thresholding the image
and locating its peaks. The approach is depicted in Fig. 6.

More formally, matched-field processing evolves as the solution to a source detection problem [8] that
can be stated as

GIVEN the set of noisy field (array) measurements in the temporal frequency domain, {Y(ω)}, DETECT
the presence of sources and FIND the best estimate of the set of location parameters, Θ.

The usual approach is to find the unknown location of the source or direction which is represented by
the position coordinate, θi and perform the detection. The solution to our problem is based on testing the
following hypotheses:

Ho : Y(ω) = N(ω) [Noise]
H1 : Y(ω) = M(ω; Θ) + N(ω) [Source + Noise]

(45)

12

Figure 5: Orthogonal Signal Subspace Model Detection for Simple Scattering Problem: (a) 7-th singular
vector detected in the signal subspace and 8-th singular vector in the noise subspace. (b) Singular value
distribution across the array.

13

Figure 6: Model-based matched-field processing (MFP) approach to the source detection problem.

14

where M(ω; θ),N(ω) ∈ CL×1 are the respective matching vector and noise vector assumed white, Gaussian,
that is, N ∼ N (0,Σ). The unknown parameters are represented by Θ. We apply the Neyman-Pearson
theorem [6] and calculate the log-likelihood ratio, that is,

L(Θ) =
Pr(Y(ω)|Θ,H1)
Pr(Y(ω)|Θ,Ho)

=
exp

(
− 1

2 (Y(ω) −M(ω; Θ))† Σ−1 (Y(ω) −M(ω; Θ))
)

exp
(
− 1

2Y(ω)†(t)Σ−1Y(ω)
) (46)

where the matching vector, M is considered deterministic, but unknown (Θ). If we take the natural logarithm
of both sides, we obtain the log-likelihood ratio

Λ(Θ) : = lnL(Θ) = ln Pr(Y(ω)|Θ,H1) − ln Pr(Y(ω)|Θ,Ho)

H1

>
<
Ho

ln τθ

Λ(Θ) = −
1
2

(Y(ω) −M(ω; Θ))† Σ−1 (Y(ω) −M(ω; Θ)) +
1
2
Y†(ω)Σ−1Y(ω)

(47)

The problem here is that the parameter vector, Θ, is unknown; therefore, the hypothesis test above must
be a composite hypothesis and the parameter vector must be estimated before a decision can be made [8].

Thus, the solution to this problem is to estimate the parameter vector, Θ̂, and then calculate the log-
likelihood to perform the test. This is called the generalized likelihood ratio test (GLRT). The GLRT is

max
Θ

Λ(Θ) = max
Θ

[ln Pr(Y(ω)|Θ,H1) − ln Pr(Y(ω)|Θ,Ho)] (48)

Now expanding the log-likelihood and performing the indicated operations gives

Λ(Θ) =
1
2
Y†(ω)Σ−1Y(ω) −

1
2
[
Y†(ω)Σ−1Y(ω)

− 2M†(ω; Θ)Σ−1Y(ω) + M†(ω; Θ)Σ−1M(ω; Θ)
]

or moving all of the “knowns” (assuming Θ estimated) into the threshold gives the resulting decision function

Λ(Θ) = M†(ω; Θ)Σ−1Y(ω)

H1

>
<
Ho

ln τθ +
1
2
M†(ω; Θ)Σ−1M(ω; Θ) =: TΘ (49)

It can be shown ([7], [13], [16], [17]) that Eq. 49 is the matched filter solution to this multichannel
problem; however, instead of the replica being a transmitted signal, it is the matching vector, M(ω; Θ̂),
generated from a propagation model with estimated parameter vector, Θ̂. Therefore, the MFP has evolved.
For example, if we consider the matching vector to be a spherical wavefront, then the solution is simply the
spatial filter or beamformer. This can be made clearer if we calculate the maximum output SNR power for
the following hypothesis test

max
Θ

P (Θ) =

H1

>
<
Ho

TΘ (50)

where
P (Θ) = E{

(
M†(ω; Θ)Σ−1Y(ω)

) (
M†(ω; Θ)Σ−1Y(ω)

)†}

15

Note also that this is just the squared likelihood decision statistic incorporating the matching vector as the
signal model.

Further, if we let the additive noise be spatially uncorrelated with unit variance, then Σ−1 = I and the
power is given by

P (Θ) = E{
(
|M†(ω; Θ)Y(ω)|2

)
= M†(ω; Θ)RyyM(ω; Θ) (51)

which is precisely the conventional matched-field processor of Bucker [15]. So we see that at each estimated
value of the parameter, Θ̂, a decision is made based on the underlying hypothesis test of Eq. 50. From the
practical viewpoint a normalized version of this processor is applied as

P (Θ) =
M†(ω; Θ)Ryy(ω)M(ω; Θ)

M†(ω; Θ)M(ω; Θ)
(52)

For localization of a source or target, the parameter vector is the unknown source position, say Θ = Θs, and
a search over a pre-specified grid is performed by estimating the power at each pixel and creating an image.
The image is usually thresholded and the resulting maximum is selected as the source position.

The spatio-temporal signals arriving at the array are governed by spherical wave propagation in a homo-
geneous medium and satisfy

s(r`jk ; t) =
1

|4r`jk|
p(t− τ`jk) for 4r`jk = |r` − rjk |; τ`jk =

|4r`jk|
c

for ` the array element, j the x-position index and k the z-position index. The signals (in the frequency
domain) are contaminated by white Gaussian noise, that is,

Y(ω) = S(r;ω) + N(ω)

The MFP is implemented in Cartesian coordinates with the unknown parameter vector given by

4r`jk = |r` − rjk | =
√

(x` − xjk)2 + (z` − zjk)2

and the corresponding matching function is therefore

M(x`jk , z`jk;ω) =
1

|4r`jk|
P (ω) exp−jωτ`jk

with the power at each pixel given by

P (x`jk , z`jk;ω) =
|M†(r;ω)Y(ω)|
M†(r;ω)M(r;ω)

=

∑
`jk |M(x`jk , z`jk;ω)Y`(ω)|2∑

`jk |M(x`jk , z`jk;ω)|2

So we see that the scatterer locations are estimated by:

1. varying the assumed scatterer positions (location parameter vector);

2. calculating the matching vector;

3. calculating the corresponding power at the specified pixel location, a power image can be generated
over desired range of pixels, j = 1, · · · , Nx; k = 1, · · · , Nz; and

4. thresholding the image and selecting the dominant peaks

Let us consider the simple scattering problem and apply the MUSIC algorithm of MFP techniques
[13] to solve the 3D-source detection problem. We applied the above methodology and calculated the
squared-likelihood function create and 3D isoplot shown in Fig. 7 along with a 2D-slice image and detection
threshold image in Fig. 8. We see that the source has been detected using the MFP and localized at
r = (−8.002, 1.99, 3) as illustrated by the long, narrow, 3D tube-like structure (due to the horizontal array)
and the ellipse in the slice. Clearly the MFP can successfully detect and localize in this simple, high-signal
environment.

16

Figure 7: 3D-isoplot of MFP Detection and Localization.

Figure 8: 2D-XY Image of MFP Detection and Localization. (a) Full squared-likelihood image with source
localized at r = (−8.002, 1.99, 3). (b) Detection image with threshold set at 95% of maximum.

17

0 5 10 15 20 25
0

0.5

1

1.5

2

TR Source Detection, Pfa = 0.1

Li
ke

lih
oo

d

Singular vector index

Likelihood
Threshold

Figure 9: Likelihoods for the TR processor and the 21-element crossed array; SNR = 3 dB, 14 scatterers.
Likelihoods for singular vectors 2 and 6 exceed the detection threshold for PFA = 0.1.

4 Simulated example

Consider the simple example with 14 scatterers from the end of section 1.1. For an SNR of 3 dB and a PFA

of 0.1, the TR detection method detects the source in the projections for the 2nd and 6th singular vectors
(Fig. 4). In addition, a conventional matched-field processor locates the source position (Fig. 4). If we
increase the number of scatterers from 14 to 2000 (Fig. 4), calculate the singular values of the MRM (Fig.
4, and the corresponding TR likelihoods for an SNR of 3 dB and PFA of 0.1 we still successfully detect the
source in the 5th singular vector (Fig. 4). The corresponding conventional MF power surface (Fig. 4) is
unable to focus on the source position. Thus the MF approach fails in a highly scattering environment but
the TR approach is still able to detect the presence of a source.

18

Figure 10: Power surface for the conventional MF processor with the 21-element crossed array and 14
scatterers. The surface encloses the source position.

19

0

5

10

−5

0

5
−4

−2

0

2

4

6

X

Array, source, and scatterer positions

Y

Z

Figure 11: Geometry for 21-element crossed array (blue), single source (black), and 2000 scatterers (red).

20

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

SVD Index

S
in

gu
la

r
va

lu
e

Singular values − crossed array − 2000 scatterers

Figure 12: Singular value spectrum for the 21-element array with 2000 scatterers.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
TR Source Detection, Pfa = 0.1

Li
ke

lih
oo

d

Singular vector index

Likelihood
Threshold

Figure 13: Likelihoods for the TR processor and the 21-element crossed array; SNR = 3dB, 2000 scatterers.
The 5th likelihood ratio (5th singular vector) exceeds the threshold for a PFA = 0.1.

21

Figure 14: Power surface for the conventional MF processor with the 21-element crossed array and 2000
scatterers. The estimator is unable to determine the position of the source due to the high level of scattering
of the tone source.

22

0 10 20 30 40 50

0

10

20

30

40

50

60

x (m)

y
(m

)

B4442

B4161
B4182

B4184

TRA

S
1S

2

Figure 15: Layout of experiment site showing the two source positions S1 and S2 and the TR array (TRA).

5 Experiment

An experiment was performed to compare the performance of the time-reversal tone detection method with
to conventional matched-field processing approaches in a highly scattering environment. After a survey
of the main Laboratory site, a set of abandoned trailers was found that provided a high multipath sound
propagation environment (see plan view, Fig. 5). These provided several possible sites for both the time-
reversal array system and the source. For the experiment, we required one site where the array and the
source would be in direct line-of-sight, and another site where there the array would be in a sound shadow
of the source. We expected both the time-reversal and MFP approaches to work when the source and array
were in sight of each other. When the array was in a shadow zone, we expect the MFP performance to be
poor.

In addition to the narrow corridors between trailers, there were steps, ramps, and railings that would
increase the scattering of the sound. The outer surfaces of the trailers were composed mostly of exterior
wood, though metal junction boxes created local areas of high reflectivity. Photographs of the site are shown
in Fig. 5.

The experimental apparatus consists of a transmit array of eight elements, a matching receiver array
(eight elements), a compact source producing a single frequency tone of 1000 Hz, and associated drivers and
controllers. The transmit array system was a set of 8 Meyer Sound, MM-4, 4-in. single element speakers
configured in a horizontal array with a pitch of 7 inches. This is powered by a Crown Audio CTS 8200,

23

Figure 16: Corridors looking toward source position 1 from time-reversal array position (left), and from
source position 1 toward source position 2 (right).

Figure 17: Time reversal array system of 8 speakers (left), 8 microphones (center), arranged in two horizontal
arrays (right).

8-channel, 150 watt amplifier and a Data Physics, DP-703 arbitrary waveform generator/digitizer. The
receiver array was composed of 8 B&K 4935 1/4”-microphones connecting to a 24-bit Data Physics digitizer
sampling at 12.8kHz. The microphones were arranged in a horizontal array with a 7 inch (0.18 m) pitch.
The transmit and receive arrays were supported by two vertical stands, with the transmit array at a height
of 1.6 meters and the receiver array of 0.84 meters (see Fig.5). The source was a B&K OmniPowerTMType
4296 omnidirectional sound source powered by a B&K Type 2716C audio power amplifier and an Agilent
33250A, 80 MHz Function/Arbitrary Waveform Generator. The source was placed on a stand at a height
of 1.14 meters from the ground (see Fig. 5). The amplitude of the source was controlled by adjusting the
output voltage of the amplifier. A Quest Model 2700 handheld source intensity meter (Fig. 5) was used to
measure the intensity of the source tone at the TR array.

24

Figure 18: Source at position 2.

25

Figure 19: Sound intensity meter used for calibrating source level at receiver array.

26

−0.01 −0.005 0 0.005 0.01

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s

Figure 20: Autocorrelation of the transmitted chirp.

5.1 Data collection and analysis

Three sets of data collections on separate days were performed. The first set was limited to system checkout
and procedural testing. In the second set, the source was placed at position S1 (see Fig. 5), which was
nominally 27 meters in front of the array. Both the time-reversal processing and the matched field processing
were expected to perform well since there was a direct path between source and receiver array. In the third
data set, the source was placed at position S2, 10 meters to the side of S1 in an area where there was no
direct path between source and array. In this configuration, the matched field processors were expected
to perform poorly since they were implemented with free-space propagation Green’s functions that do not
incorporate reflections from obstacles.

For each data collect, the multistatic response matrix for the time-reversal array system was measured. A
Hanning windowed linear frequency chirp from 800 to 1000 Hz with a duration slightly less than 0.25 seconds
was transmitted sequentially from each speaker in the array. After each transmit, all eight microphones
recorded the reflected reverberation for 2 seconds at a sampling frequency of 12.8 kHz (25,600 samples).
The chirp was transmitted 18 times from each speaker and the returns recorded. After the transmits were
completed for all eight speakers the data was arranged into 18 ”snapshots” of the time-domain multistatic
response matrix. Each snapshot consisted of 64 time series representing the 8 by 8 multistatic response
matrix. Each time series was ”compressed” by cross-correlating with the transmitted chirp so that the result
was equivalent to the return obtained if the autocorrelation of the chirp (Fig. 5.1) was transmitted.

The early parts of the time series in the MRM include direct coupling between transmitter and receiver,
and reflections from the ground directly below the array. Since only reflections from scatterers away from the
array are of interest, the first 0.2 seconds of each time series was windowed out. A sample of eight received
time series (data set 3) when the first speaker transmitted the pulse is shown in Fig. 5.1. Figure 5.1 is an
image of the envelopes of all 64 time series for the time-domain MRM after averaging over snapshots. The
return is dominated by reflections within the first quarter second, which corresponds to a range of 42 meters
(nominal sound speed of 330 m/s).

Each series in each snapshot of the time-domain MRM was Fourier transformed and the complex am-
plitude for the tone frequency of 1000 Hz was retained. The result was 18 snapshots of an 8 by 8 complex

27

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
sec

Recorded return, transmitter 1

Figure 21: Return for all eight microphones from a tone transmitted from speaker 1 - single snapshot. First
20 ms have been windowed out to eliminate ground reflection and direct coupling between speaker and
microphones.

matrix, the multistatic response matrix for the tone frequency. The final estimate of the MRM at 1000 Hz
was obtained by averaging over the snapshots. Figure 5.1 shows the real and imaginary part of the MRM
for 1000 Hz (data set 3). Figure 5.1 shows the corresponding magnitude and phase. There is no discernible
pattern to the elements of the MRM, an indication of rapid field variation in the neighborhood of the array.
The SVD was performed on the final estimate to obtain the singular vectors for the TR tone processing (Fig.
5.1).

The preceding analysis of the MRM was performed without the presence of the tone. In order to determine
the effect of a 1000 Hz tone on the estimation process, the MRM was measured when the tone was either
20 dB (data set 2) or 0 dB (data set 3) above the background in an octave centered around 1000 Hz as
measured by the handheld sound pressure meter (Fig. 5). A comparison of the singular value spectra for
the two source positions and the two tone levels is shown in figure 5.1. There is little difference between
the singular values with and without the presence of the tone for either 20 dB or 0 dB levels above the
background. The presence of the tone is manifested most in the singular vectors (see Fig 5.1).

A sound pressure meter adjusted to measure the intensity (dB) within an octave band around 1000 Hz
was used to determine signal-to-background noise level (SNR) of the emitted tone at the microphone array.
Background levels were around 70 dB with rapid variation of +/- 3 dB. The tone level was varied by adjusting
the output voltage of the driver amplifier. Positive SNR levels were determined directly. The 0 dB SNR
level was determined by gradually reducing the drive voltage from positive SNR levels until the tone drops

28

sec

Envelope of averaged time−domain MRM (dB)

0 0.05 0.1 0.15 0.2 0.25 0.3

10

20

30

40

50

60

−60

−50

−40

−30

−20

−10

0

Figure 22: Envelope of snapshot averaged return from all eight microphones and eight transmits (64 signals
total).

just below the ability of the meter to detect it. Negative SNR were inferred by extrapolating the SNR versus
amplifier voltage curves obtained from the positive SNR levels (see Fig. 5.1).

After the measurement of the MRM, the tone was set to the proper SNR and a number of two-second
snapshots of the tone were acquired with the microphone array. In data set 2, the number of snapshots
was 18, while the number of snapshots for data set 3 was 56. Each snapshot consisted of eight two-second
time records, one for each microphone in the array. Each time record was demeaned, multiplied by a
Hanning window, Fourier transformed, and the 1000 Hz frequency line was extracted. This reduced the
eight microphone time series in a snapshot to eight complex amplitudes. Since the two-second windows
for each snapshot could start at any phase point in the 1000 Hz tone, the overall phases of the complex
amplitudes are random, only the relative phases are meaningful. To enable averaging over snapshots, the
phase of the first complex amplitude (microphone 1) was subtracted from the phases of the other 7 amplitudes
in each snapshot. This preserved the relative phase relationships between microphones when averaging over
snapshots. The 8 by 8 cross-covariance matrix, which is used in several of the MFP detection methods, was
calculated by averaging over snapshots. The snapshot-averaged complex amplitude vector is used by the
time-reversal processing method.

Figure 5.1 shows the distribution of complex amplitudes for data set 2, where the source was placed 27
meters in front of the array. Data was obtained for SNR values of 20, 14, 10, 0, -10, and -20 dB. Figure
5.1 shows the magnitude distributions for different SNR values and the corresponding array-averaged power
spectra. Though the SNR values refer to the power integrated over the octave around 1000 Hz, the spectral
amplitude at 1000 Hz rises above the background noise for SNR greater than -20 dB. This is reflected in the

29

Real part of MRM

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

−1.5

−1

−0.5

0

0.5

1

1.5

Imaginary part of MRM

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 23: Real and imaginary parts of the complex MRM at 1000 Hz (data set 3)

Magnitude of MRM

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

0.5

1

1.5

Phase/π of MRM

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 24: Magnitude and phase of the complex MRM at 1000 Hz (data set 3)

similarity of the amplitude distribution across the array for SNR of -10 dB and greater. Using the calculated
power spectra, the spectral noise power can be estimated and a more characteristic SNR for 1000 Hz. can be
calculated (see Table I). The real and imaginary parts of the covariance matrix for SNR of 20 dB is shown
in Fig. 5.1. A comparison between the magnitudes of the covariance for different SNR can be seen in Fig.
5.1. Those for SNR of 0 dB and greater show the same pattern. Deviations from the pattern are noticeable
for SNR of -10 dB.

Figures 5.1 through 5.1 display the same quantities for data set 3. In this case the source was placed 10
meters around the corner of one of the buildings from its position in data set 2. There was no direct path
between source and array. All the received source signals were reflected or diffracted around the corners of
the buildings. From the power spectra in Fig. 5.1 the 0 dB level at 1000 Hz is close to the -10 dB level
and is likely to be better characterized as -5 dB. This is a consequence of the rapid +/- 3 dB variation in
the background noise level as the source voltage was decreased from the 10 dB setting. Using the calculated
power spectra, a better estimate of the noise power at 1000 Hz was obtained and a set of adjusted SNR
levels determined (see Table II). There is less similarity between the covariance matrices for different SNR,
with the exception of 0 dB and -10 dB (Fig 5.1).

30

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

Index

Singular values, set 3

Mean SVD of snapshots
SVD of mean MRM

Figure 25: Singular values for the snapshot averaged MRM (squares), and snapshot averaged singular values
(circles) (data set 3). The error bars are +/-1 σ around the mean singular values.

Table I. SNR and noise power for data set 2

Nominal SNR Noise power ×105 SNR at 1000 Hz
20 6.09 57
14 3.33 54
10 4.66 48
0 3.48 38

-10 2.92 28
-20 3.73 4

Table II. SNR and noise power for data set 3

Nominal SNR Noise power ×104 SNR at 1000 Hz
20 6.79 49
15 6.03 43
10 6.43 37
0 5.98 20

-10 6.94 16

31

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

Index

Set 2, no tone
Set 3, no tone
Set 2, 20 dB tone
Set 3, 0 dB tone

Figure 26: Singular values both data sets with and without the presence of the 1000 Hz tone.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m

U
1
, Data set 2

No tone
20 dB tone

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m

U
2
, Data set 2

No tone
20 dB tone

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m

U
3
, Data set 2

No tone
20 dB tone

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m

U
1
, Data set 3

No tone
0 dB tone

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m

U
2
, Data set 3

No tone
0 dB tone

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m

U
3
, Data set 3

No tone
0 dB tone

Figure 27: Comparison of singular vectors with and without tone.

32

10
−3

10
−2

10
−1

10
0

−20

−15

−10

−5

0

5

10

15

20

25

Voltage

S
N

R
 (

dB
)

Tone level curve − set 2

Figure 28: Tone SNR versus amplifier voltage for data set 2. Circles are measurements by sound intensity
meter. Curve is least-squares fit to measurements for extrapolating SNR to negative values.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−6

−4

−2

0

2

4

6

8

10

m

Complex amplitudes, 20 dB

Real
Imaginary

Figure 29: Real and imaginary parts of the complex amplitudes at 1000 Hz for each microphone in the array
for data set 2.

33

−0.5 0 0.5
10

−3

10
−2

10
−1

10
0

10
1

m

Magnitude

20 dB
10 dB
0 dB
−10 dB
−20 dB

980 985 990 995 1000 1005 1010 1015 1020

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Hz
P

ow
er

 /
H

z

Array averaged power spectrum

20 dB
10 dB
0 dB
−10 dB
−20 dB

Figure 30: Distributions of the microphone magnitudes at 1000 Hz at different SNR for data set 2 (left),
and the array averaged power spectra (right).

Real part, 20 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
−60

−40

−20

0

20

40

60

Imaginary part, 20 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
−60

−40

−20

0

20

40

60

Figure 31: Real and imaginary parts of the covariance matrix for data set 2, SNR = 20 dB.

34

Magnitude, 20 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

10

20

30

40

50

60

70

Magnitude, 10 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 1

2

3

4

5

6

Magnitude, 0 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Magnitude, −10 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 32: Magnitudes of covariance matrices for data set 2 for different SNR values.

35

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−6

−4

−2

0

2

4

6

8

10

m

Complex amplitudes, 20 dB

Real
Imaginary

Figure 33: Real and imaginary parts of the complex amplitudes at 1000 Hz for each microphone in the array
for data set 3.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

10
−1

10
0

10
1

10
2

m

Magnitudes

20 dB
10 dB
0 dB
−10 dB

980 985 990 995 1000 1005 1010 1015 1020
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Hz

P
ow

er
 /

H
z

Array averaged power spectrum

20 dB
10 dB
0 dB
−10 dB

Figure 34: Distributions of the microphone magnitudes at 1000 Hz at different SNR for data set 3 (left),
and the array averaged power spectra (right).

36

Real part, 20 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 −150

−100

−50

0

50

100

150

Imaginary part, 20 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 −150

−100

−50

0

50

100

150

Figure 35: Real and imaginary parts of the covariance matrix for data set 3, SNR = 20 dB.

Magnitude, 20 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 20

40

60

80

100

120

140

160

Magnitude, 10 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 1

2

3

4

5

6

7

Magnitude, 0 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Magnitude, −10 dB

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Figure 36: Magnitudes of covariance matrices for data set 3 for different SNR values.

37

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

Pfa

T
hr

es
ho

ld

Figure 37: Variation of detection threshold with probability of false alarm (pfa).

5.2 TR and MFP detection

As described earlier, the goal of the experiment is to enhance the detection of the tone using the singular
vectors of the multistatic response matrix. The binary detection approach outlined in section 2.3 is applied
to the experimental data with a slight modification in scaling. Let the vector Y be the measured data, S
the signal vector, and N the noise vector. The binary hypothesis is

Ho : Y(ω) = N(ω)

H1 : Y(ω) = S(ω) + N(ω) . (53)

Since the singular vectors ui of the MRM span the data space, the data, signal, and noise vectors can be
expanded as

Y =
M∑

i=1

yiui , S =
M∑

i=1

siui , N =
M∑

i=1

niui . (54)

Thus the binary hypothesis 53 can be broken into M independent problems of the form

Y · ui = yi =
{

ni : H0

si + ni : H1
(55)

where ni ∼ N (0, σ2).
The log-likelihood function for each complex expansion coefficient is ln Λi = sqrtNyi

σ , where N is the
number of snapshots and yi is the mean of the data over all snapshots. Using the Neyman-Pearson criterion,
the hypotheses are selected based on the test

ln Λi

H1

≥
<
H0

λi (56)

38

with the probabilities of detection and false alarm given by

PFA(λi) = 1√
2π

∫∞
λi

exp−x2/2d x =
1
2
erfc(λi/

√
2) (57)

PDET (λi) = 1√
2π

∫∞
λi

exp−(x− s̃i)2/2d x =
1
2
erfc

(
(λi − s̃i)/

√
2
)
, (58)

where s̃i = si

√
N/σ. The threshold λi is determined by choosing PFA and solving the first equation. Note

that this step does not depend on the data and can be calculated once for all cases (see Fig. 5.2). If a
detection occurs for a given component Y ·ui, the probability of detection PDET can be calculated from the
second equation if si is known. For the TR detection problem, si is not know and must be estimated from
the data. If a detection occurs, the mean yi would be a good estimate of the signal, i.e s̃i = yi

√
N/σ = ln Λi.

Figures 5.2 and 5.2 show the log-likelihoods for data sets 2 and 3. Since the log-likelihood is complex,
both the real and imaginary parts are shown. These can be treated independently and the theshold applied
to either. Except for the -20 dB case in data set 2, the log-likelihoods for each singular vector exceed the
maximum calculated threshold (1% PFA). Thus the time-reversal technique successfully detects the presence
of the source with 1% PFA whether the source is in direct sight of the array or shadowed from it.

The TR detection method is now compared with the matched field (MFP) approach. The MFP technique
requires a model of the Green’s function describing the propagation of the acoustic signal from the tone source
to the array. Knowledge of the propagation environment is almost always uncertain, and even when known
it is often impractical to calculate the Green’s functions. Thus a simplified propagation model is used in
the MFP with the hope that the uncertainties will not severely impair the performance of the processor.
For the experimental data the free-space Green’s function is used in the MPF. This might be adequate for
data set 2 when there is an unobstructed path between the source and the array. However, for data set 3
the sound must propagate around an obstructing building, which is not described by the free-space Green’s
function. Figure 5.2 shows the output of the conventional, MVDR, and the MUSIC MFP for data set 2
(day 2). In each case, the source position is included in the main lobe of the likelihood function with a
fairly high treshold. The source is in the far field of the array, so the likelihood function can only determine
the direction of the source, not its range. Figure 5.2 shows a similar set of isosurface plots for data set 3.
In this case isosurfaces for threshold values typical for localization in data set 2 do not locate the source.
The threshold values required to include the source location in the main lobe are very low, indicating that
the MFP estimate of the source direction is quite poor. As expected, the MFP with the free-space Green’s
function cannot describe propagation that includes corner diffraction and multiple reflection.

39

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000
Likelihood ratio, SNR = 20 dB

Real
Imaginary

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000
Likelihood ratio, SNR = 20 dB

Real
Imaginary

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800
Likelihood ratio, SNR = 0 dB

Real
Imaginary

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

1000
Likelihood ratio, SNR = 0 dB

Real
Imaginary

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

11
Likelihood ratio, SNR = −20 dB

Real
Imaginary
Threshold

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14
Likelihood ratio, SNR = −20 dB

Real
Imaginary
Threshold

Figure 38: Log-likelihoods for data set 2 where the tone source is in a direct line with the array. Right
column uses singular vectors from the MRM measured in the presence of the source tone (20 dB). Lowest
row (0 dB) shows the threshold level for 1% probability of false alaram.

40

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

Likelihood ratio, SNR = 20 dB

Real
Imaginary

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000
Likelihood ratio, SNR = 20 dB

Real
Imaginary

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180
Likelihood ratio, SNR = 0 dB

Real
Imaginary

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160
Likelihood ratio, SNR = 20 dB

Real
Imaginary

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120
Likelihood ratio, SNR = −10 dB

Real
Imaginary

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100
Likelihood ratio, SNR = −10 dB

Real
Imaginary

Figure 39: Log-likelihoods for data set 3 where the tone source is shadowed from the array. Right column
uses singular vectors from the MRM measured in the presence of the source tone (0 dB).

41

Figure 40: Isosurface plots for conventional, MVDR, and MUSIC MFP likelihood functions. Threshold levels
are 0.999, 0.99, and 0.95 for the conventional MFP at 20, 0, and -20 dB SNR, respectively. Threshold levels
for the MUSIC MFP are 0.99 and 0.98 for 20 and -20 dB, and 0.5 for the MVDR (0 dB SNR).

42

Figure 41: Isosurface plots for conventional and MUSIC MFP likelihood functions for an SNR of 20 dB.
The upper plots show isosurfaces for threshold values typical of that for data set 2 (0.89 for the conventional
and 0.965 for MUSIC MFP). The lower plots are isosurfaces for threshold values that incorporate the source
location in the main lobe (0.15 for the conventional and 0.03 for the MUSIC MFP.

43

6 Summary

The time-reversal decomposition of the multistatic response matrix for an active array is used to enhance
the performance of the array in a passive listening mode in a complicated multi-path environment. A
likelihood ratio test based on the projection of the tone data onto the set of singular vectors is derived and
its performance is compared with more conventional matched field processing (MFP) using both simulated
and measured experimental data. A set of Matlab codes were constructed that both generate simulated data
and perform both the TR and the MFP analysis. It is shown that the time-revesal processor is more robust
than the MFP in a highly scattering environment.

Acknowledgment

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

References

[1] D. Chambers and J. Berryman, “Time reversal analysis for scatter characterization,” Phys. Rev. Lett,
Vol. 92, 0239021-0239024, 2004.

[2] D. Chambers and J. Berryman, “Analysis of the time-reversal operator for a small spherical scatterer
in an eletromagnetic field,” IEEE Trans. Anten. and Propg., Vol. 52, No. 7, 1729-1738, 2004.

[3] C. Prada and M. Fink, “Eigenmodes of the time reversal operator: a solution to selective focusing in
multiple-target media,” Wave Motion, Vol. 20, 151-163, 1994.

[4] G. Golub and C. Van Loan, Matrix Computations, Baltimore, Johns Hopkins University Press, 1990.

[5] L. Sharf, Statistical Signal Processing: Detecton, Estimation and Time Series Analysis, Addision-
Wesley: Massachusetts, 1990.

[6] J. Melsa and D. Cohen, Decision and Estimation Theory, McGraw-Hill: New York, 1978.

[7] D. Johnson and D. Dudgeon, Array Signal Processing: Concepts and Techniques, Prentice-Hall, New
Jersey, 1993.

[8] H. Van Trees, Optimum Array Processing, New York, John Wiley, 2002.

[9] D. Dudgeon and R. Mersereau, Multidimensional Digital Signal Processing, Prentice-Hall, New Jersey,
1984.

[10] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Ant. and
Propag., Vol. AP-34, 1986.

[11] V. Pisarenko, “The retrieval of harmonics from a covariance function,” Geophysical J. Royal Astronom-
ical Soc., Vol. 33, 1973.

[12] H. Krim and M. Viberg, “Two decades of array signal processing research,” IEEE Signal Proc. Mag.,
Vol. 13, 1996.

[13] J. V. Candy, Model-Based Signal Processing, John Wiley: New Jersey, 2006.

[14] M. Hinich, “Maximum likelihood signal processing for a vertical array,” J. Acoust. Soc. Amer., Vol. 54,
1973.

44

[15] H. Bucker, “Use of calculated sound fields and matched-field detection to locate sound in shallow water,”
J. Acoust. Soc. Amer., Vol. 59, 1976.

[16] E. Sullivan and D. Middleton, “Estimation and detection issues in matched-field processing,” IEEE J.
Oceanic Eng., Vol. 18, 1993.

[17] A. Baggeroer, W. Kuperman and H. Schmidt, “Matched-field processing: source localization in corre-
lated noise as an optimum parameter estimation problem,” J. Acoust. Soc. Amer., Vol. 83, 1988.

[18] M. Wax, Detection and Estimation of Superimposed Signals, PhD Dissertation, Stanford University,
Stanford CA, 1985.

[19] D. Tufts and R. Kumaresan, “Estimation of frequencies of multiple sinusoids: making linear prediction
perform like maximum likelihood,” IEEE Proc., Vol. 70, 9, 1982.

[20] R. Klem, “Use of generalized resolution methods to locate sources in random dispersive media,” IEE
Proceedings, Vol. 127, Pt. F, 1980.

A Spatio-Temporal Signals

In this appendix we develop an array processing approach to detect a source for spatio-temporal signals or
simply propagating waves. We discuss the development of wave-based processors to estimate the parameters
capturing the propagating wave structure and detect the presence of a source. We start with the basic
definitions of the “signal models” employed and show how they can be used to construct the source detection
problem.

The basic spatio-temporal wave model is defined by [18]

ỹ`(t) =
Ns∑

n=1

α`(k)s̃ (t− τ`(k)) + η̃`(t) (59)

where

s̃(t) is the temporal signal (source) of the nth wavefront observed at the `th sensor element;

α`(k) is the wavefront amplitude at the `th sensor arriving from the k-direction;

τ`(k) is the propagation delay between the `th sensor and nth wavefront arrival;

η̃`(t) is the additive random noise at the `th sensor.

This model can be simplified under the following sequence of assumptions. If we first assume that the
process is demodulated to baseband at a center frequency of ωo ([7]-[12]) by multiplication (modulation) of a
complex exponential, ejωot followed by low-pass filtering of the upper frequency bands, then the wave model
becomes

y`(t) =
Ns∑

n=1

α`(k)s (t− τ`(k)) + η`(t) (60)

45

where y`, s, η are the complex, low-pass filtered versions of ỹ`, s̃, η̃.
Next assume that the low-pass signal, s(t), changes very slowly in time as the wavefront impinges across

the array, that is, it is essentially assumed constant over any time interval less than or equal to the maximum
array delay (4T ≤ τmax). Under these conditions the signal s(t) is defined as narrowband and therefore

s (t− τ`(k)) ≈ s(t)ejωoτ`(k) [Narrowband Approximation] (61)

The generic narrowband wave model then becomes

y`(t) =
Ns∑

n=1

α`(k)s (t) ejωoτ`(k) + η`(t) (62)

If expand this expression across the array, then we obtain the vector relationships

y(t) =
Ns∑

n=1

d(k)s (t) + η(t) (63)

where we define the direction vector, d(k) ∈ CL×1 with

d′(k) :=
[
α1(k)ejωoτ1(k) · · ·αL(k)ejωoτL(k)

]
(64)

Finally, expanding this expression over the number of source signals impinging on the array, we obtain the
narrowband, spatio-temporal wave model

y(t) = D(k)s (t) + η(t) (65)

for D(k) ∈ CL×Ns the direction matrix defined by

D(k) =

α1(k1)ejωoτ1(k1) · · · α1(kNs)ejωoτ1(kNs)

...
...

αL(k1)ejωoτL(k1) · · · αL(kNs)e
jωoτL(kNs)

 (66)

The direction matrix is parameterized by complex amplitude and phase elements defined by d`n :=
α`(κ)ejωoτ`(κ) for ` the sensor array element and n the signal vector component with the parameters
{α`(κ), τ`(κ)} defined uniquely for planar or spherical wavefronts and κ the corresponding spatial frequency
or wavenumber (κo = ωo

c = 2π
λo

) for c the propagation speed.
It should be noted that the wavenumber is a vector specifying the direction-of-arrival of a wavefront as

it impinges on the sensor array. For instance, the angle of incidence, θo, that the direction vector makes
with the array vertical reference, is defined in terms of the wavenumber and sensor locations. For the 2D
case, let the horizontal and vertical wavenumbers be defined by κo = [κx κy] and the location vector be

r = [x y]; therefore, the complex wavenumber vector has magnitude, |κ| =
√
κ2
x + κ2

y and the angle is

∠κo = [sin θo cos θo]. Thus, in this case the wavenumber vector is defined by its components,

κo = [κx κy] = [|κo| sin θo |κo| cos θo] (67)

With this in mind, a harmonic plane wave signal vector can be represented by

s(r; t) = αoe
jωote−jκo·r = αoe

jωote−j(κxx+κyy) = αoe
j(ωot−(|κo| sin θox+|κo| cos θoy)) (68)

We see that in this case the plane wave is characterized by the parameter vector, Θo = {αo, κo} or
equivalently Θo = {αo, ωo, θo}.

46

Assuming further that the processes are zero-mean and wide-sense stationary (WSS), we take expectations
and obtain the corresponding L× L measurement covariance matrix

Ryy = E{y(t)y†(t)} = D(k)RssD†(k) + Rηη (69)

where Rss is the Ns ×Ns signal covariance matrix and Rηη is the L× L noise covariance matrix and † is
the hermitian transpose. Note that this model captures both plane wave and spherical wave cases by the
appropriate definition of the time delay and attenuation, that is,

τplanar(k) = k · z or τspherical(k) = kr · r

αplanar(k) = 1 or αspherical(k) =
1
|r|

Note also that the narrowband model of Eq. 65 can also be expressed equivalently in the temporal
frequency domain by taking Fourier transforms to obtain the relation

Y(ω) = D(k)S(ω) + N(ω) (70)

which leads to the corresponding spectral covariance matrix [7]

Ryy(ω) = E{Y(ω)Y†(ω)} = D(k)Rss(ω)D†(k) + Rηη(ω) (71)

There have been a wide variety of methods applied to the source detection/localization problem which
are usually limited to estimating the number of signals (harmonics), Ns, as well as the associated arrival
angles, {θi}, i = 1, · · · , Ns, ([7], [?], [19], [12]). In the signal processing literature, the problem is called the
direction-of-arrival (DOA) estimation problem (for plane waves) or spatial localization problem (for spherical
waves). Techniques typically assume that the spatio-temporal signal is separable into both spatial, s(θ) and
temporal, s(t), parts. Array signal processing is involved with processing the multi-channel sensor array data
to detect and localize source positions.

Performing an eigen-decomposition on the spectral covariance matrix of Eq. 71, replacing the wavenumber
parameter vector with the angle-of-incidence and assuming the measurement noise is white this relation
becomes

Ryy(ω) = D(θ)RssD
H(θ) + σ2

ηηI with d`n = ejωoκ` sin θn ,

` = 1, · · · , L;n = 1, · · · , Ns (72)

Note that in practice the spatial covariance matrix is usually not available in analytical form; therefore,
it must be estimated form the measured sensor array data. The maximum likelihood estimator [7] is obtained
by averaging over the array temporal snapshots using

R̂yy =
1
N

N∑

k=1

Yk(ω)Y†(ω) for Y ∈ CL×1 (73)

By performing the eigen-decomposition of the estimated spatial covariance matrix, we obtain

Ryy(ω) =
Ns∑

i=1

(
λs

i + σ2
ηη

)
eieH

i +
Ns∑

i=Ns+1

σ2
ηηeieH

i (74)

and therefore the signal and noise subspaces are defined

Ryy(ω) = E(Ns)Λ(Ns)EH(Ns) +E(N −Ns)Λ(N −Ns)EH(N −Ns) (75)

47

In the spatial case, the “ harmonic signal vectors” are the columns of the direction matrix, D(θ) with
the signal direction vectors defined by {d(θi)}, i = 1, · · · , Ns and d ∈ CL×1. Thus, we have the orthogonality
condition of the signal and noise subspaces as

d(θi) ⊥ ej = dH(θi)ej = 0 i = 1, · · · , Ns; j = Ns + 1, · · · , N (76)

and expanding over i we obtain

DH(θ)ej = 0 j = Ns + 1, · · · , N (77)

Using the power method [20], we can generate the multiple signal classification method (MUSIC) [10]
spectrum from

P MUSIC(θi) :=
1

dH(θi) [E(N −Ns)EH(N −Ns)]d(θi)
=

1
∑N

j=Ns+1 |dH(θi)ej |2
(78)

The DOA estimates are then obtained by locating the spectral peaks. So we see that the spectral
estimation techniques developed for temporal harmonic parametric estimation map over to the wave-type
problems directly with the temporal harmonic signal vectors replaced by the spatial direction signal vectors
([10]).

B Operation of Simulator

In this appendix we describe the different menus and outputs encountered during the operation of the time-
reversal tone detection simulator. The basic layout of the simulator is shown in Fig. ??. The simulator is
started from Matlab by entering the command TRT Menu, which starts the supervisor menu. In addition to
the standard window menu items, the supervisor has five menus that control the operation of the simulator.
These are DATA, TR PROCESS, MF PROCESS, ANALYZE, and EXIT. The DATA menu is used to create
simulated data or import measured data. The TR PROCESS and MF PROCESS menus contain the time-
reversal and matched field processor algorithms. ANALYZE has a set of display functions plus routines for
matched-field detection and localization. The last menu (EXIT) is used to exit the simulator. We describe
the operation of these menus and show examples below.

B.1 DATA Menu

The DATA menu has two functions, SIM Scatterers/Source and LOAD Data, plus a subsidiary menu for
editing the simulator setup functions that specify the tone source, scatterer distribution, time-reversal array
configuration, and imaging volume for the matched field processors. Selecting SIM Scatterers/Source creates
a simulated data set. The data is a set of complex numbers representing the complex amplitude of the field
sampled at the receivers of the time-reversal array. The field is radiated by a single frequency tone source and
includes the effect of multiple scattering from a specified distribution of point scatterers. During the creation
of the data set the user is asked for two quantities. The first is the number of point scatterers in the problem
volume. The second is the size of the imaging volume for matched field processing. The problem volume is
the smallest rectangular box that contains the time-reversal array and the source. Its volume is calculated
for the user so that the number of scatterers can be selected to attain a desired number density. The imaging
volume defines a rectangular box around the tone source for calculating the matched field energy detection
function. The user specifies the imaging volume as a fraction of the problem volume. This can be either a
1 by 3 array with separate fractions for x, y, and z, or a single number to create an image volume with the
same aspect ratio as the problem volume. These fractions can be any positive number. Fractions greater
than unity will create an imaging volume with dimensions larger than the problem volume. The default
resolution is 51 sample points in each direction. The function ends by displaying a three-dimensional view
of the problem setup. The time-reversal array is represented by a series of blue circles. The source is a large

48

Figure 42: Menu hierarchy for the TR and MF simulator

black asterisk enclosed by a circle. The scatterers are shown as red circles whose sizes are proporational to
the values of the scattering cross-sections. At completion the user is ready to implement time-reversal or
matched field processing on the simulated data.

The LOAD data function imports measurements of both the tone and the multistatic response matrix
(MRM) of the time-reversal array. It loads the variables f0, MRMf0, tr receiver, tr transmit, tone data,
source tru, and tone cov from the file Exp data.mat, which is presumed to exist in the working directory of
the simulator. From these it calculates the problem volume and prompts the user to specify the imaging
volume as described above. The variables tr receiver and tr transmit are arrays of dimension Nrcv by 3 and
Nxmt by 3, respectively, that specify the coordinates of the receive and transmit elements of the time-reversal
array system. The time-reversal array system can have different numbers of transmit (Nxmt) and receiver
(Nrcv) elements that may not be co-located. The tone source coordinates are specified by source tru. The
received tone data, frequency f0, is given by the complex vector tone data with length Nrcv. MRMf0 is the
complex-valued Nrcv by Nxmt, multistatic response matrix. All the processing scripts in the simulator use
these variable names. The user is expected to package all measured data into these variables contained in
the file Exp data.mat. Any variation requires the user to edit the script TRT Load Data.m. At the end of
execution the problem setup is displayed using the same symbols described above.

There are four subsidiary functions under the EDIT Parameters menu selection. These are SOURCE
Parms, SCATTERER Parms, TR ARRAY Parms, and MF Parms. Each of these opens a different Matlab
script for editing. These scripts are used to set the initial values for the simulator. The SOURCE Parms item
opens the file TRT Set Source.m which specifies the position and frequency of the tone source. SCATTERER
Parms opens the script file TRT Set Scatts.m, which is used to create the scatterer distribution. The

49

TR ARRAY Parms item edits TRT Set TRarray.m where the time-reversal array configuration is specified.
MF Parms opens TRT Set MFParms.m, which specifies the imaging volume and sampling for the matched
field processors. The TR ARRAY Parms and MF Parms items are also found with slightly different names
under the TR PROCESS and MF PROCESS top-level menus.

B.2 TR PROCESS Menu

The TR PROCESS menu consists of three functions, TR Response/SVD Matrix, TR ROC, and TR De-
tection. Together these implement the time-reversal tone detection algorithm. The remaining menu item,
EDIT TR Array Parms, edits the file TRT Set TRarray.m as described above.

The first function, TR Response/SVD Matrix, calculates the multistatic response matrix for the given
array and scatterer configuration. It then performs the singular value decomposition and creates a plot of
the singular values.

The TR ROC function allows the user to select a threshold for the time-reversal detection functions for
each left singular vector of the MRM based on a desired probability of false alarm (PFA). The detection
function for a given singular vector is the absolute value of the inner product of the normalized data with
the singular vector. Assuming that the data is a complex Gaussian random vector, the absolute value of
the inner product is a Rician random variable. We approximate this as Gaussian (exact for high SNR) to
calculate the threshold for a given PFA. The TR ROC function asks the user for the SNR of the data then
plots the receiver-operator curve (ROC) and the threshold as a function of PFA in a single window. The
ROC curve is the upper plot and the threshold is the lower plot. Using the mouse, the user positions the
cross-hairs over the operating point (threshold and PFA) on the lower plot. Clicking the mouse sets the
cross-hairs at the operating point. The user then presses ENTER to save the PFA and threshold values in
the Matlab workspace. These values are displayed in the command window.

The TR Detection function creates a stem plot of the absolute value of the inner product between the
data and each singular vector, and overlays a line at a selected threshold. The tone is detected if at least
one inner product exceeds the threshold. The function prompts the user to enter a threshold or use the
threshold previously determined with the TR ROC function.

B.3 MF PROCESS Menu

The MF PROCESS menu contains five variations of the matched field processor (Conventional MF, MVDR
MF, MEM MF, MUSIC MV, EIG MF) and a selection (EDIT MF Run Parameters) that edits the file
TRT Set MFParms.m. Each of the matched field functions calculates the generalized likelihood ratio (GLR)
over the imaging volume and displays a three-dimensional view of an isosurface. In addition, the source
position is marked by a black asterisk inside a black circle. If the isosurface encloses the source position,
the marker may not be visible. The details of each matched field processor is described in the text. The
MVDR, MRM, MUSIC, and EIG processors requires the user to specify the SNR if simulated data is being
processed. The regularization parameter for each of these processors is the product of the SNR amplitude
factor (10−SNR/20) and Frobenius norm of the data covariance matrix. In addition, the MUSIC and the EIG
processors request the user enter the dimension of the signal subspace (typically the number of sources).
The MEM processor requires the user to specify a reference receiver. All the processors allow the user
to specify the propagation model (matching field) used to calculate the matching vector. Specifying ‘inc’
calculates the matching field using free-space propagation. Specifying ‘all’ calculates the matching field from
the same Foldy-Lax model used to generate the simulated data. This choice should give the best results
since it incorporates the ‘exact’ propagation model. However, it is quite slow if there are a large number of
scatterers in the problem volume.

The initial isosurface displayed for the matched field processors is selected to enclose 2% of the total
imaging volume. The fractional isolevel for this surface is reported in the Matlab command window. The
fractional isolevel is used to select the value of the GLR function to display. An isolevel of zero represents
the minimum of the GLR in the imaging volume. The maximum of the GLR is an isolevel of unity. The user

50

is prompted for another isolevel after the initial display. This can be used to investigate the structure of the
GLR in the imaging volume. Higher isolevels should create smaller surfaces centered around the maximum.
In this way, the user can determine how well the GLR localizes the source. If the exact propagation model
is used to create the GLR, the maximum should occur at the source position. Entering -1 for the isolevel
value will terminate the isosurface plotting function.

B.4 ANALYZE Menu

The ANALYZE menu consists of three display functions and two functions useful for analyzing two-dimensional
slices of the GLR function calculated by a matched field processor. The DISPLAY Image creates an image
of a horizontal slice (xy) through the GLR function. The user is prompted to specify the slice number to
be displayed. The DISPLAY Image Slices function displays a cycle of horizontal slice images with start and
stop points specified by the user. The DISPLAY Isoplot is a rendering of a three-dimensional isosurface of
the GLR. This is the default display mode for the matched field processor functions described earlier.

The THRESHOLD Image Detection function is used to threshold a horizontal slice of the GLR function
and locate the maximum. It prompts the user for a particular slice number, then displays an image of the
slice. The user is prompted for a threshold level (percentage of maximum). The function creates a binary
image of the slice based on the user threshold. All pixels whose values are above the threshold are displayed
as white, while the remainder are black. A set of cross-hairs are drawn and the user can position them over
any pixel. Clicking the mouse button selects that pixel, and pressing Enter will display the xy coordinates
of the each selected pixel in the Matlab Command window. The user can position the cross-hairs at multiple
points, selecting each one by clicking the mouse button before pressing Enter to display their positions. The
LOCALIZE Image (Pixels) function displays a user selected horizontal slice and allows the user to position
cross-hairs at a selected point to obtain the xy coordinates (displayed in the Command window).

C Simulator program listings

The following pages are the source listings of all the Matlab functions and scripts that constitute the TR
tone simulator described in Appendix B. Below is a table of simulator functions and scripts, followed by the
actual listings.

51

Functions and scripts in listing.

CTable Menu.m TRT ROC RUN.m isoplot ConvMF.m
Imagethreshold.m TRT ResponseSVD Run.m isoplot EIGMF.m
Level Set.m TRT SDetection Run.m isoplot MEMMF.m
Listing.doc TRT Scatters Run.m isoplot MUSICMF.m
Listing.pdf TRT Set MFParms.m isoplot MVDRMF.m
Listing.txt TRT Set Parms.m make Kfl.m
Modulus.m TRT Set Scatts.m max3d.m
TRT Conv MF.m TRT Set Source.m plot ConvMF.m
TRT EIG MF.m TRT Set TRarray.m plot EIGMF.m
TRT Image.m TRT Volume.m plot MEMMF.m
TRT Image Zcycle.m TR Pevm.m plot MUSICMF.m
TRT Image locate.m TR Pmemm.m plot MVDRMF.m
TRT Image thresh.m TR Pmusicm.m plot POW.m
TRT Load Data.m TR Pmvdr.m plot data setup.m
TRT MEM MF.m field inc.m plot scatts.m
TRT MUSIC MF.m fieldfl.m solvefl.m
TRT MVDR MF.m flipCmap.m
TRT Menu.m isoplot0.m

52

% CTable_Menu
% PURPOSE: This is the routine to provide the basic TANGO pull-down menu for
ops
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 11 SEPT 97
% MODIFY DATE: 11 SEPT 97
%
% AUTHOR: J. V. Candy
%
% INPUTS:
%
% OUTPUTS: Menu Operations
%
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

%%
%
%:::
:::
%
%:::
:::

%|||
||
|||||||||||||||||||||||||||||||||
 DISkolor=uimenu(Image_Plot,'Label','COLORMAP','ForeGroundColor',[1 0

0]);

 color1=uimenu(DISkolor,'Label','hsv','Callback',['colormap(hsv),',...

 'set(color1,''Checked'',''on''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''off''),','set(color6,''Checked'',''off''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''off''),','set(color0,''Checked'',''off'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''off'');']);

 color2=uimenu(DISkolor,'Label','gray','Callback',['colormap(gray),'...

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''on''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''off''),','set(color6,''Checked'',''off''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''off''),','set(color0,''Checked'',''off'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''off'');']);

 color3=uimenu(DISkolor,'Label','hot','Callback',['colormap(hot),'...

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''on''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''off''),','set(color6,''Checked'',''off''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''off''),','set(color0,''Checked'',''off'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''off'');']);

 color4=uimenu(DISkolor,'Label','cool','Checked','on','Callback',['colormap
(cool),',...

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''on''),',...

 'set(color5,''Checked'',''off''),','set(color6,''Checked'',''off''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''off''),','set(color0,''Checked'',''off'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''off'');']);

 color5=uimenu(DISkolor,'Label','bone','Callback',['colormap(bone),',...

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''on''),','set(color6,''Checked'',''off''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''off''),','set(color0,''Checked'',''off'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''off'');']);

 color6=uimenu(DISkolor,'Label','copper','Callback',['colormap(copper),',..
.

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''off''),','set(color6,''Checked'',''on''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''off''),','set(color0,''Checked'',''off'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''off'');']);

 color7=uimenu(DISkolor,'Label','pink','Callback',['colormap(pink),',...

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''off''),','set(color6,''Checked'',''off''),',...

 'set(color7,''Checked'',''on''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''off''),','set(color0,''Checked'',''off'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''off'');']);

 color8=uimenu(DISkolor,'Label','prism','Callback',['colormap(prism),',...

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''off''),','set(color6,''Checked'',''off''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''on''),',...

 'set(color9,''Checked'',''off''),','set(color0,''Checked'',''off'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''off'');']);

 color9=uimenu(DISkolor,'Label','jet','Callback',['colormap(jet),',...

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''off''),','set(color6,''Checked'',''off''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''on''),','set(color0,''Checked'',''off'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''off'');']);

 color0=uimenu(DISkolor,'Label','flag','Callback',['colormap(flag),',...

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''off''),','set(color6,''Checked'',''off''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''off''),','set(color0,''Checked'',''on'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''off'');']);

 color11=uimenu(DISkolor,'Label','summer','Callback',['colormap(summer),',.
..

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''off''),','set(olor6,''Checked'',''off''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''off''),','set(colcor0,''Checked'',''off''),',...

 'set(color11,''Checked'',''on''),','set(color12,''Checked'',''off'');']);

 color12=uimenu(DISkolor,'Label','winter','Callback',['colormap(winter),',.
..

 'set(color1,''Checked'',''off''),','set(color2,''Checked'',''off''),',...

 'set(color3,''Checked'',''off''),','set(color4,''Checked'',''off''),',...

 'set(color5,''Checked'',''off''),','set(color6,''Checked'',''off''),',...

 'set(color7,''Checked'',''off''),','set(color8,''Checked'',''off''),',...

 'set(color9,''Checked'',''off''),','set(color0,''Checked'',''on'');',...

 'set(color11,''Checked'',''off''),','set(color12,''Checked'',''on'');']);

 color13=uimenu(DISkolor,'Label','flip','Callback',['flipCmap;']);

 color14=uimenu(DISkolor,'Label','spin','Callback',['spinmap(3,1)']);

function psi = field_inc(field_pts,src_location,k)
% function psi = field_inc(field_pts,src_location,k)
% This function calculates the free space Green's function in a plane of
% constant z for each array element in parray. Inputs are:
% field_pts: M by D array of (x,y,z) locations to evaluate incident field
% src_location: (x,y,z) position of radiating source (z can be
% omitted if using two-dimensional model)
% k: wave number
% If D=2, assume two-dimensional propagation model

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

 [rows,cols] = size(field_pts);
 I = sqrt(-1);
 if cols>3
 field_pts = field_pts';
 N = cols;
 D = rows;
 else
 N = rows;
 D = cols;
 end

 if D==2
 args = sqrt((field_pts(:,1)-src_location(1)).^2 ...
 + (field_pts(:,2)-src_location(2)).^2);
 psi = .25*I*besselh(0,k*args);
 else
 args = sqrt((field_pts(:,1)-src_location(1)).^2 ...
 + (field_pts(:,2)-src_location(2)).^2 ...
 + (field_pts(:,3)-src_location(3)).^2);

 psi = .25*exp(I*k*args)./(pi*args);
 end

% end function

function psiscat = fieldfl(field_points,scat_locations,scat_strengths,psipts,k0)
% function psiscat =
fieldfl(field_points,scat_locations,scat_strengths,psipts,k0)
% This function calculates the scattered field at the specified
% points. Inputs are:
% field_points: M by D array of (x,y,z) locations to evaluate scattered
field
% scat_locations: N by D array of the (x,y,z) locations of the scatterers
% scat_strengths: N scattering strengths or one single strength for
% all scatterers
% psipts: values of complex total field at scatterer locations
% (calculated by solvefl)
% k0: wave number
% If D=2, assume two-dimensional propagation model
% Output is the complex scattered field values at the specified locations.

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

 [rows,cols] = size(scat_locations);
 if cols>3
 scat_locations = scat_locations';
 N = cols;
 D = rows;
 else
 N = rows;
 D = cols;
 end
 psipts = psipts(:);
 scat_strengths = scat_strengths(:);
 if length(scat_strengths)==1
 scat_strengths = scat_strengths*ones(N,1);

 end
 Npts = length(psipts);
 if Npts~=N
 disp('Number of field values not equal to number')
 disp('of scattering points. Execution terminated')
 return
 end
 I = sqrt(-1);
 psipts = scat_strengths.*psipts;
 [frows,fcols] = size(field_points);
 if fcols>3
 field_points = field_points';
 nf = fcols;
 fcols = frows;
 else
 nf = frows;
 end

 if D==2
 [x1,x2] = meshgrid(scat_locations(:,1),field_points(:,1));
 [y1,y2] = meshgrid(scat_locations(:,2),field_points(:,2));
 gf = .25*I*besselh(0,k0*sqrt((x1-x2).^2 + (y1-y2).^2));
 psiscat = gf*psipts;
 else
 [x1,x2] = meshgrid(scat_locations(:,1),field_points(:,1));
 [y1,y2] = meshgrid(scat_locations(:,2),field_points(:,2));
 [z1,z2] = meshgrid(scat_locations(:,3),field_points(:,3));
 gf = sqrt((x1-x2).^2 + (y1-y2).^2 + (z1-z2).^2);
 gf = .25*exp(I*k0*gf)./(pi*gf);
 psiscat = gf*psipts;
 end

% end function

function flipCmap(none);
 none=' ';
 cmap=colormap;
 colormap(flipud(cmap));

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

 function Xout=IMAGEthreshold(X,alpha);

 % this is routine is used to theshold an image and fill all values
below
 % threshold with zeros

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

 [Irow,Jcol]=find(X>alpha*max(max(X)));
 Xout=zeros(size(X));
 for k=1:size(Irow)
 Xout(Irow(k),Jcol(k))=X(Irow(k),Jcol(k));
 end

function [] = isoplot0(x,y,z,V,Vlevel,color)
% function [] = isoplot0(x,y,z,V,Vlevel,color)
% This function displays an isosurface of data V at Vlevel and superposes
% the spheres given by sph_pos. Input variables are:
% x,y,z: coordinate vectors for volume data
% V: volume data
% Vlevel: isosurface value
% color: patch color (e.g. 'r' for red)

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

 Vmin = min(min(min(V)));
 Vmax = max(max(max(V)));
 nx = length(x);
 ny = length(y);
 nz = length(z);
 xrange = [x(1) x(nx)];
 yrange = [y(1) y(ny)];
 zrange = [z(1) z(nz)];
 if Vlevel<Vmin | Vlevel > Vmax
 disp('Error: Vlevel outside range of V')
 disp(['Range of V: [' num2str([Vmin Vmax]) ']'])
 return
 end

 clf
 p = patch(isosurface(x,y,z,V,Vlevel));
 isonormals(x,y,z,V,p);
 set(p,'FaceColor',color,'EdgeColor','none');
 daspect([1 1 1])
 view(3);

 axis([xrange yrange zrange])
% axis tight
 camlight right
 lighting phong

% end function

%:::
% Function: TRT_Volume
%
% PURPOSE: This is the routine to display volumes from a given run
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Volume
% OUTPUTS: Volume plot
%
%
%:::
%
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** VOLUME DISPLAY *****')
disp(' ')

% initialize parms
fig_name=['Conventional MF POWER Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...

 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
[MFPlevel,frac_level] = Level_Set(MFP,.02,1);
isoplot0(xs',ys',zs',MFP,MFPlevel,'c')
hold on
scatter3(source_tru(1),source_tru(2),source_tru(3),120,'*k','LineWidth',2);
scatter3(source_tru(1),source_tru(2),source_tru(3),120,'ok','LineWidth',2);
hold off
xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
zlabel('Z-position (Wavelengths)')
title('CONVENTIONAL MF Power Surface')
grid on
Mmin=min(MFP(:));
Mmax=max(MFP(:));
disp(['Initial fractional ISO Level is ' num2str(frac_level)])
alpha=input('ISO _Level? (0 <Level< 1) (-1 to Exit) > ');
while alpha~=-1
 ILevel=(1-alpha)*Mmin+alpha*Mmax;
 figure(Image_Plot);
 isoplot0(xs',ys',zs',MFP,ILevel,'c')
 hold on
 scatter3(source_tru(1),source_tru(2),source_tru(3),120,'*k','LineWidth',2);
 scatter3(source_tru(1),source_tru(2),source_tru(3),120,'ok','LineWidth',2);
 hold off
 xlabel('X-position (Wavelengths)')
 ylabel('Y-position (Wavelengths)')
 zlabel('Z-position (Wavelengths)')
 title('CONVENTIONAL MF Power Surface')
 grid on
 alpha=input('New ISO Level? (0 <Level< 1) (-1 to Exit) > ');
end

disp('*** ISO PLOT Complete ***')

%:::
% Function: TRT_Volume
%
% PURPOSE: This is the routine to display volumes from a given run
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Volume
% OUTPUTS: Volume plot
%
%
%:::
%
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** VOLUME DISPLAY *****')
disp(' ')

% initialize parms
fig_name=['EIG MF POWER Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...

 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
[MFPlevel,frac_level] = Level_Set(MFP,.02,1);
isoplot0(xs',ys',zs',MFP,MFPlevel,'c')
hold on
scatter3(source_tru(1),source_tru(2),source_tru(3),120,'*k','LineWidth',2);
scatter3(source_tru(1),source_tru(2),source_tru(3),120,'ok','LineWidth',2);
hold off
xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
zlabel('Z-position (Wavelengths)')
title('EIG MF Power Surface')
grid on
Mmin=min(MFP(:));
Mmax=max(MFP(:));
disp(['Initial fractional ISO Level is ' num2str(frac_level)])
alpha=input('ISO _Level? (0 <Level< 1) (-1 to Exit) > ');
while alpha~=-1
 ILevel=(1-alpha)*Mmin+alpha*Mmax;
 figure(Image_Plot);
 isoplot0(xs',ys',zs',MFP,ILevel,'c')
 hold on
 scatter3(source_tru(1),source_tru(2),source_tru(3),120,'*k','LineWidth',2);
 scatter3(source_tru(1),source_tru(2),source_tru(3),120,'ok','LineWidth',2);
 hold off
 xlabel('X-position (Wavelengths)')
 ylabel('Y-position (Wavelengths)')
 zlabel('Z-position (Wavelengths)')
 title('EIG MF Power Surface')
 grid on
 alpha=input('New ISO Level? (0 <Level< 1) (-1 to Exit) > ');
end

disp('*** ISO PLOT Complete ***')

%:::
% Function: TRT_Volume
%
% PURPOSE: This is the routine to display volumes from a given run
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Volume
% OUTPUTS: Volume plot
%
%
%:::
%
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** VOLUME DISPLAY *****')
disp(' ')

% initialize parms
fig_name=['MEM MF POWER Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...

 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
[MFPlevel,frac_level] = Level_Set(MFP,.02,1);
isoplot0(xs',ys',zs',MFP,MFPlevel,'c')
hold on
scatter3(source_tru(1),source_tru(2),source_tru(3),120,'*k','LineWidth',2);
scatter3(source_tru(1),source_tru(2),source_tru(3),120,'ok','LineWidth',2);
hold off
xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
zlabel('Z-position (Wavelengths)')
title('MEM MF Power Surface')
grid on
Mmin=min(MFP(:));
Mmax=max(MFP(:));
disp(['Initial fractional ISO Level is ' num2str(frac_level)])
alpha=input('ISO _Level? (0 <Level< 1) (-1 to Exit) > ');
while alpha~=-1
 ILevel=(1-alpha)*Mmin+alpha*Mmax;
 figure(Image_Plot);
 isoplot0(xs',ys',zs',MFP,ILevel,'c')
 hold on
 scatter3(source_tru(1),source_tru(2),source_tru(3),120,'*k','LineWidth',2);
 scatter3(source_tru(1),source_tru(2),source_tru(3),120,'ok','LineWidth',2);
 hold off
 xlabel('X-position (Wavelengths)')
 ylabel('Y-position (Wavelengths)')
 zlabel('Z-position (Wavelengths)')
 title('MEM MF Power Surface')
 grid on
 alpha=input('New ISO Level? (0 <Level< 1) (-1 to Exit) > ');
end

disp('*** ISO PLOT Complete ***')

%:::
% Function: TRT_Volume
%
% PURPOSE: This is the routine to display volumes from a given run
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Volume
% OUTPUTS: Volume plot
%
%
%:::
%
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** VOLUME DISPLAY *****')
disp(' ')

% initialize parms
fig_name=['MUSIC MF POWER Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...

 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
[MFPlevel,frac_level] = Level_Set(MFP,.02,1);
isoplot0(xs',ys',zs',MFP,MFPlevel,'c')
hold on
scatter3(source_tru(1),source_tru(2),source_tru(3),120,'*k','LineWidth',2);
scatter3(source_tru(1),source_tru(2),source_tru(3),120,'ok','LineWidth',2);
hold off
xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
zlabel('Z-position (Wavelengths)')
title('MUSIC MF Power Surface')
grid on
Mmin=min(MFP(:));
Mmax=max(MFP(:));
disp(['Initial fractional ISO Level is ' num2str(frac_level)])
alpha=input('ISO _Level? (0 <Level< 1) (-1 to Exit) > ');
while alpha~=-1
 ILevel=(1-alpha)*Mmin+alpha*Mmax;
 figure(Image_Plot);
 isoplot0(xs',ys',zs',MFP,ILevel,'c')
 hold on
 scatter3(source_tru(1),source_tru(2),source_tru(3),120,'*k','LineWidth',2);
 scatter3(source_tru(1),source_tru(2),source_tru(3),120,'ok','LineWidth',2);
 hold off
 xlabel('X-position (Wavelengths)')
 ylabel('Y-position (Wavelengths)')
 zlabel('Z-position (Wavelengths)')
 title('MUSIC MF Power Surface')
 grid on
 alpha=input('New ISO Level? (0 <Level< 1) (-1 to Exit) > ');
end

disp('*** ISO PLOT Complete ***')

%:::
% Function: TRT_Volume
%
% PURPOSE: This is the routine to display volumes from a given run
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Volume
% OUTPUTS: Volume plot
%
%
%:::
%
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** VOLUME DISPLAY *****')
disp(' ')

% initialize parms
fig_name=['MVDR MF POWER Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...

 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
[MFPlevel,frac_level] = Level_Set(MFP,.02,1);
isoplot0(xs',ys',zs',MFP,MFPlevel,'c')
hold on
scatter3(source_tru(1),source_tru(2),source_tru(3),120,'*k','LineWidth',2);
scatter3(source_tru(1),source_tru(2),source_tru(3),120,'ok','LineWidth',2);
hold off
xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
zlabel('Z-position (Wavelengths)')
title('MVDR MF Power Surface')
grid on
Mmin=min(MFP(:));
Mmax=max(MFP(:));
disp(['Initial fractional ISO Level is ' num2str(frac_level)])
alpha=input('ISO _Level? (0 <Level< 1) (-1 to Exit) > ');
while alpha~=-1
 ILevel=(1-alpha)*Mmin+alpha*Mmax;
 figure(Image_Plot);
 isoplot0(xs',ys',zs',MFP,ILevel,'c')
 hold on
 scatter3(source_tru(1),source_tru(2),source_tru(3),120,'*k','LineWidth',2);
 scatter3(source_tru(1),source_tru(2),source_tru(3),120,'ok','LineWidth',2);
 hold off
 xlabel('X-position (Wavelengths)')
 ylabel('Y-position (Wavelengths)')
 zlabel('Z-position (Wavelengths)')
 title('MVDR MF Power Surface')
 grid on
 alpha=input('New ISO Level? (0 <Level< 1) (-1 to Exit) > ');
end

disp('*** ISO PLOT Complete ***')

function [Vlevel,flevel] = Level_Set(V,vol_fraction,xflag)
% function [Vlevel,flevel] = Level_Set(V,vol_fraction,xflag)
% This function takes a volume array and a volume fraction
% and determines the isolevel Vlevel and fractional isolevel
% flevel that contains the specified volume fraction around either the
% maximum or minimum. This is used in conjuction with isoplot0 to
% intelligently select the isosurface. Inputs are:
% V: volume array (Nx by Ny by Nz)
% vol_fraction: volume fraction contained in isosurface
% xflag: >=0 for volume around peak, <0 for volume around minimum

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

 V = V(:);
 Nv = length(V);
 V = sort(V);
 n = (1:Nv)';
 Vmin = V(1);
 Vmax = V(Nv);
 cV = cumsum(V-Vmin);
 if xflag>=0
 NVol = Nv-round(vol_fraction*Nv);
 else
 NVol = round(vol_fraction*Nv);
 end
 Vlevel = V(NVol);
 flevel = (Vlevel-Vmin)/(Vmax-Vmin);

% end function

function K =
make_Kfl(rcv_locations,xmt_locations,scat_locations,scat_strengths,k0)
% function K =
make_Kfl(rcv_locations,xmt_locations,scat_locations,scat_strengths,k0)
% This function calculates the multistatic response matrix for a time-reversal
% array system consisting of separate transmit and receiver subarrays which may
% be colocated. Each subarray can transmit and receive, making the designation
% somewhat arbitrary. Inputs are:
% rcv_locations: N by D array of the (x,y,z) locations of the receive
elements
% xmt_locations: M by D array of the (x,y,z) locations of the transmit
elements
% scat_locations: J by D array of the (x,y,z) locations of the scatterers
% scat_strengths: J scattering strengths or one single strength for
% all scatterers
% k0: wave number

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

 [rows,cols] = size(rcv_locations);
 if cols>3
 rcv_locations = rcv_locations';
 Nr = cols;
 else
 Nr = rows;
 end
 [rows,cols] = size(xmt_locations);
 if cols>3
 xmt_locations = xmt_locations';
 Nx = cols;
 else

 Nx = rows;
 end

 K = zeros(Nr,Nx);
 for i=1:Nx
 disp(['TR transmit element ' num2str(i) ' out of ' num2str(Nx)])
 psipts = solvefl(scat_locations,scat_strengths,xmt_locations(i,:),k0);
 K(:,i) = fieldfl(rcv_locations,scat_locations,scat_strengths,psipts,k0);
 end

% end function

function [ymax,ind] = max3d(y3d)
% function [ymax,ind] = max3d(y3d)
% This function finds the overall maximum of a 3d array and its indices.

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

 [y2d,ind2d] = max(y3d);
 y2d = squeeze(y2d);
 ind2d = squeeze(ind2d);
 [y1d,ind1d] = max(y2d);
 y1d = squeeze(y1d);
 [y0d,ind0d] = max(y1d);

 ymax = y0d;
 ind = [ind2d(ind1d(ind0d),ind0d) ind1d(ind0d) ind0d];

% end function

function [] = Modulus(i,n,imax)
% function [] = Modulus(i,n,imax)
% This function displays the value of "i" when rem(i,n)==0

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

 ir = rem(i,n);
 if nargin==3
 if ir==0
 disp([num2str(i) ' / ' num2str(imax)])
 end
 else
 if ir==0
 disp(num2str(i))
 end
 end

% end function

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

cmap='jet';
fig_name=['Conventional MF POWER Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
colormap(cmap);
imagesc(xs,(ys),(MFPout'));
colorbar;
CTable_Menu
xlabel('X-position (Wavelength)')
ylabel('Y-position (Wavelengths)')
title(['CONVENTIONAL MF Power Image: Z = ' num2str(zs(iz))])
grid on
pause(1)

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

% output plot results
figure('Name','Problem','inter','on','units','norm',...
 'NumberTitle','off','Position',[.4,.035,.55,.85],'Color',[.8 .8 .8]);
Xloc=scat_pts(:,1);
Yloc=scat_pts(:,2);
Zloc=scat_pts(:,3);
TRXloc=tr_receiver(:,1);
TRYloc=tr_receiver(:,2);
TRZloc=tr_receiver(:,3);
scatter3(TRXloc,TRYloc,TRZloc,'filled','b')
TxXloc=tr_transmit(:,1);
TxYloc=tr_transmit(:,2);
TxZloc=tr_transmit(:,3);
hold on;
scatter3(TxXloc,TxYloc,TxZloc,'filled','c')
SXloc=source_tru(1,1);
SYloc=source_tru(1,2);
SZloc=source_tru(1,3);
hold on;
scatter3(SXloc,SYloc,SZloc,120,'*k','LineWidth',2)
scatter3(SXloc,SYloc,SZloc,120,'ok','LineWidth',2)
xlabel('X-Coord')
ylabel('Y-Coord')
zlabel('Z-Coord')

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

cmap='jet';
fig_name=['EIG MF POWER Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
colormap(cmap);
imagesc(xs,(ys),(MFPout'));
colorbar;
CTable_Menu
xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
title(['EIG MF Power Image: Z = ' num2str(zs(iz))])
grid on
pause(1)

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

cmap='jet';
fig_name=['MEM MF POWER Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
colormap(cmap);
imagesc(xs,(ys),(MFPout'));
colorbar;
CTable_Menu
xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
title(['MEM MF Power Image: Z = ' num2str(zs(iz))])
grid on
pause(1)

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

cmap='jet';
fig_name=['MUSIC MF POWER Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
colormap(cmap);
imagesc(xs,(ys),(MFPout'));
colorbar;
CTable_Menu
xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
title(['MUSIC MF Power Image: Z = ' num2str(zs(iz))])
grid on
pause(1)

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

cmap='jet';
fig_name=['MVDR MF POWER Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
colormap(cmap);
imagesc(xs,(ys),(MFPout'));
colorbar;
CTable_Menu
xlabel('X-position (Wavelength)')
ylabel('Y-position (Wavelengths)')
title(['MVDR MF Power Image: Z = ' num2str(zs(iz))])
grid on
pause(1)

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

fname=' ';cmap='jet';
fig_name=['POWER Displacement Data: ' fname];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
colormap(cmap);
imagesc(xs,(ys),(MFPout'));
colorbar;
CTable_Menu
%hold on;
%contour(xcoord*1000,-fliplr(ycoord)*1000,flipud(BFout2'),5,'k');hold off
xlabel('X-position (km)')
ylabel('Y-position (km)')
title(['Source Power Image: Z = ' num2str(zs(iz))])
grid on
pause(2)
tyn='y';
tyn=input('Threshold Image? (y or n) > ','s');
while strcmp(tyn,'y')
 threshold=input('Threshold Value? > ');
 Image_Plot=figure('Name','Threshold','inter','on','units','norm',...
 'NumberTitle','off','Position',[.4,.035,.55,.85],'Color',[.8 .8 .8]);
 colormap('gray')
 Tbf=IMAGEthreshold((MFPout'),threshold); % perform the
thresholding
 posit=get(gca,'Position');
 delete(gca);
 axes('Position',posit);
 %imagesc(xcoord*1000,fliplr(ycoord)*1000,flipud(Tbf')); %LUS
 %hold on;

 %contour(xcoord*1000,fliplr(ycoord)*1000,flipud(Tbf'),5,'k'); %LUS
 imagesc(xs,ys,(Tbf)); % TR
 % hold on
 % contour(xcoord*1000,fliplr(ycoord)*1000,(Tbf'),5,'k');% TR
 %hold off
 xlabel('X-position ')
 ylabel('Y-position ')
 title('Source Localization')
 ginput
 CTable_Menu
 tyn=input('New Threshold? (y or n) > ','s');
end
%colormap('jet')

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

% output plot results
figure('Name','Problem','inter','on','units','norm',...
 'NumberTitle','off','Position',[.4,.035,.55,.85],'Color',[.8 .8 .8]);
Xloc=scat_pts(:,1);
Yloc=scat_pts(:,2);
Zloc=scat_pts(:,3);
scatter3(Xloc,Yloc,Zloc,80*scat_amp,'filled','r')
axis square
title('Scatterer(r)/Source(k) Positions (TR Arrays: Rx(b), Tx(c))')
TRXloc=tr_receiver(:,1);
TRYloc=tr_receiver(:,2);
TRZloc=tr_receiver(:,3);
hold on;
scatter3(TRXloc,TRYloc,TRZloc,'filled','b')
TxXloc=tr_transmit(:,1);
TxYloc=tr_transmit(:,2);
TxZloc=tr_transmit(:,3);
hold on;
scatter3(TxXloc,TxYloc,TxZloc,'filled','c')
SXloc=source_tru(1,1);
SYloc=source_tru(1,2);
SZloc=source_tru(1,3);
hold on;
scatter3(SXloc,SYloc,SZloc,120,'*k','LineWidth',2);
scatter3(SXloc,SYloc,SZloc,120,'ok','LineWidth',2);
xlabel('X-Coord')
ylabel('Y-Coord')
zlabel('Z-Coord')

function psipts = solvefl(scat_locations,scat_strengths,src_location,k0)
% function psipts = solvefl(scat_locations,scat_strengths,src_location,k0)
% This function solves for the total field at N point scatterers in D
% dimensions. Output is used for calculating the scattered field. Inputs are:
% scat_locations: N by D array of the (x,y,z) locations of the scatterers
% scat_strengths: N scattering strengths or one single strength for
% all scatterers
% src_location: (x,y,z) position of radiating source (z can be
% omitted if using two-dimension model)
% k0: wave number
% If D=2, assume two-dimensional propagation model.
% Output is the complex-valued total field at the scatterer locations.

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

 [rows,cols] = size(scat_locations);
 if cols>3 % Apply transpose if scat_locations is D X N
 scat_locations = scat_locations';
 N = cols;
 D = rows;
 else
 N = rows;
 D = cols;
 end

 amps = sqrt(scat_strengths(:));
 Namps = length(amps);
 if Namps==1
 amps = amps*ones(N,1);
 end

 src_location = src_location(:)';
 I = sqrt(-1);

 if D==2
 args = k0*sqrt((scat_locations(:,1)-src_location(1)).^2 ...
 + (scat_locations(:,2)-src_location(2)).^2);
 v = -.25*I*besselh(0,args).*amps;
 [x1,x2] = meshgrid(scat_locations(:,1),scat_locations(:,1));
 [y1,y2] = meshgrid(scat_locations(:,2),scat_locations(:,2));
 argg = k0*sqrt((x1-x2).^2 + (y1-y2).^2) + eye(N);
 sm = -.25*I*bessel(0,argg).*(amps*(amps.'));
 else
 args = sqrt((scat_locations(:,1)-src_location(1)).^2 ...
 + (scat_locations(:,2)-src_location(2)).^2 ...
 + (scat_locations(:,3)-src_location(3)).^2);
 v = .25*exp(I*k0*args).*amps./(pi*args);
 [x1,x2] = meshgrid(scat_locations(:,1),scat_locations(:,1));
 [y1,y2] = meshgrid(scat_locations(:,2),scat_locations(:,2));
 [z1,z2] = meshgrid(scat_locations(:,3),scat_locations(:,3));
 argg = sqrt((x1-x2).^2 + (y1-y2).^2 + (z1-z2).^2) + eye(N);
 sm = -.25*exp(I*k0*argg).*(amps*(amps.'))./(pi*argg);
 end
 for j=1:N
 sm(j,j) = 1;
 end
 psipts = sm\v;
 psipts = psipts./amps;

% end function

function [pev]=TR_Pevm(nsignal,EVR,SVIR,s);
% Pevm
%:::
::
:::
%
% This is the Johnson EIGEN-solution estimator for location
% It requires svd(R) the covariance matrix R
% It requires svd(R) the covariance matrix R to estimate the evector spatial
% spectrum of the data and an estimate of the no. of sources.
%
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%
%
%
% SOURCE: Matlab M-files
% DATE: 4/3/02
% Date Modify: 4/3/02
%
% AUTHORS: J.V. Candy
%
% INPUTS:
% EVR is the Lx(L-nsignal) matrix of eigenvectors
of R
% pev is the power at the given location
% s is the steering vector
% nsignal is the no. of sources
%
% OUTPUTS:

% power_evector
%
% ROUTINES REQD: none but SVD must be available for Rinv calc and nsigal
%
%
%:::
::
:::::::::::::::::
%
%
%
%
%disp('Perform EV Beamforming')

[L,Nsteer]=size(s);
pden=real(diag(s'*EVR*SVIR*EVR'*s));
for i=1:Nsteer
 pev(i,1)=1/pden(i);
end

function [pmem]=TR_Pmemm(L,mid,EV,SVI,s,Ns);
% Pmemm
%:::
::
:::
% this is a routine to run a tugs file and perform the following operation:
%
% This is the Maximum Entropy Method (MEM) estimator for location.
%
% It requires svd(R) the covariance matrix R to estimate the MEM spectrum of the
data
%
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%
%
%
% SOURCE: Matlab M-files
% DATE: 4/3/02
% Date Modify: 4/3/02
%
% AUTHORS: J.V. Candy
%
% INPUTS:
% EV is the LxL matrix of eigenvectors of R
% SVI is the LxL diagonal matrix of singular (eigenvalues) of
Rinv
% pmem is the power at the given location
% s is the steering vector

% mid is the column of Rinv to be used in the
calculation (usually 1st)
%
% OUTPUTS:
% pmem
%
% ROUTINES REQD: none but SVD must be available for Rinv calc
%
%
%:::
::
:::::::::::::::::
%
%
%
% Calculate the MEM power estimate assuming svd(R) is available
%
%
%disp('Perform MEM Beamforming')

Rinv=EV*SVI*EV';
amem = Rinv(:,mid);
anorm = amem(1);
for i =1:L
 amem(i)=amem(i)/anorm;
end
pden=s'*amem;
pden=diag(pden*pden');
for i=1:Ns
 pmem(i,1)=1/sqrt(pden(i));
end

function [power_music]=TR_Pmusicm(nsignal,EVR,s);
% Pmusic
%:::
::
:::
%
% This is the Schmidt MUSIC estimator for location
% It is the MUlitple SIgnal Classification method (MUSIC) power estimator.
% It requires svd(R) the covariance matrix R to estimate the MUSIC spatial
% spectrum of the data and an estimate of the no. of sources.
%
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%
%
%
% SOURCE: Matlab M-files
% DATE: 4/3/02
% Date Modify: 4/3/02
%
% AUTHORS: J.V. Candy
%
% INPUTS:
% EVR is the Lx(L-nsignal) matrix of eigenvectors
of R
% power_music is the power at the given location
% s is the steering vector
% nsignal is the no. of sources
%
% OUTPUTS:

% power_music
%
% ROUTINES REQD: none but SVD must be available for Rinv calc and nsigal
%
%
%:::
::
:::::::::::::::::
%
%
%
%
%
%disp('Perform MUSIC Beamforming')

[L,Nsteer]=size(s);
pden=real(diag(s'*EVR*EVR'*s));
for i=1:Nsteer
 power_music(i,1)=1/pden(i);
end

function [power_mvdr]=TR_Pmvdr(s,EV,SVI,Ns);
% Pmvdr
%:::
::
:::
%
% This is the Capon minimum energy EIGEN-solution estimator for location
% It is really the constrained (look direction) estimator called
% the Minimum Variance Distortionless Response (MVDR) power estimator.
% It requires svd(R) the covariance matrix R
% Estimate the MVDR spectrum of the data
%
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%
%
%
% SOURCE: Matlab M-files
% DATE: 4/3/02
% Date Modify: 4/3/02
%
% AUTHORS: J.V. Candy
%
% INPUTS:
% EV is the LxL matrix of eigenvectors of R
% SVI is the LxL diagonal matrix of singular (eigenvalues) of Rinv
% power_mvdr is the power at the given location
% s is the steering vector
%
% OUTPUTS:

% power_mvdr
%
% ROUTINES REQD: none but SVD must be available for Rinv calc
%
%
%:::
::
:::::::::::::::::
%
%
%
%disp('Perform MVDR Beamforming')
[L,nn]=size(EV);
Rinv=EV*SVI*EV';
c = (L*L);
pden=real(diag(s'*Rinv*s));

for i=1:Ns
 power_mvdr(i,1)=c/pden(i);
end

%:::
% Function: TRT_Conv_MF
%
% PURPOSE: This is the routine to run TRT Conventional MF
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Conventional MF Parms
% OUTPUTS: Source run parameters
%
%
%:::
%
% calculate Conventional MFP (Imaging)
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** Conventional Matched-Field Detector *****')
disp(' ')

ifield=input('Matching Field? (all or inc) > ','s');

MFP = zeros(Ny,Nx,Nz);
for ix=1:Nx
 xs(ix)=xstart+(ix-1)*dx;
 Modulus(ix,10,Nx);
 for jy=1:Ny
 ys(jy)=ystart+(jy-1)*dy;
 for kz=1:Nz
 zs(kz)=zstart+(kz-1)*dz;
 source=[xs(ix) ys(jy) zs(kz)];
 psi3d_inc = field_inc(tr_receiver,source,k0); % Incident field
 if strcmp(ifield,'all')
 psipts = solvefl(scat_pts,scat_amp,source,k0);
 psi3d_scat = fieldfl(tr_receiver,scat_pts,scat_amp,psipts,k0);
 psi3d_tot = (psi3d_inc+psi3d_scat)./(abs(psi3d_inc+
psi3d_scat)); % Total field
 else
 psi3d_tot = (psi3d_inc)./(abs(psi3d_inc)); % Total field
 end
 MFP(jy,ix,kz)=(abs(psi3d_tot'*psi3d_tot_dat))^2; % Conventional
MFP
 end
 end
end
disp(['Maximum / mean = ' num2str(max(MFP(:))/mean(MFP(:)))])
[MFPmax,indmax] = max3d(MFP);
disp(['Maximum = ' num2str(MFPmax) ' at (' num2str(xs(indmax(1))) ', '
num2str(ys(indmax(2))) ', ' num2str(zs(indmax(3))) ')'])
% plot 2D images
%for iz=1:Nz
% MFPout=MFP(:,:,iz);
% plot_ConvMF;
%end
isoplot_ConvMF

%:::
% Function: TRT_EIG_MF
%
% PURPOSE: This is the routine to run TRT Eigenvector (EIG)
% MF processor
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT EIG MF Parms
% OUTPUTS: Source run parameters
%
%
%:::
%
% Calculate MFP (Imaging)
%
%:::
% CALCULATE COVARIANCE matrix with white noise (regularization) term:
% (Ryy+alph*I) to be inverted
%:::
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** EIG Matched-Field Detector *****')
disp(' ')
% alph=input('White Noise Regularization? (alpha) = ');
% Calculate total field if simulated. Otherwise assume given by data.
if Nscats>0
 sim_cov = (psi3d_inc_dat+psi3d_scat_dat)*(psi3d_inc_dat + psi3d_scat_dat)';
 snr = input('Enter regularization SNR: ');
 alph = (10^(-snr/20))*norm(sim_cov,'fro');
 cov_psi3d_tot_dat = sim_cov + alph*eye(length(tr_receiver));
else
 alph=input('White Noise Regularization? (alpha) = ');
 cov_psi3d_tot_dat = tone_cov + alph*eye(length(tr_receiver));
end
[EV,SV,EVT] = svd(cov_psi3d_tot_dat);
SVI=0.0*SV;
L=length(diag(SV));
for i=1:length(diag(SV))
 SVI(i,i)=1/SV(i,i);
end

ifield=input('Matching Field? (all or inc) > ','s');
nsignal=input('No. of Sources? (Subspace Dimension) = ');
%:::
% Begin IMAGING loops
%:::

MFP = zeros(Ny,Nx,Nz); %EFB

for ix=1:Nx
 xs(ix)=xstart+(ix-1)*dx;
 Modulus(ix,10,Nx);
 for jy=1:Ny
 ys(jy)=ystart+(jy-1)*dy;
 for kz=1:Nz
 zs(kz)=zstart+(kz-1)*dz;
 source=[xs(ix) ys(jy) zs(kz)];
 psi3d_inc = field_inc(tr_receiver,source,k0); % Incident field
 if strcmp(ifield,'all')
 psipts = solvefl(scat_pts,scat_amp,source,k0);
 psi3d_scat = fieldfl(tr_receiver,scat_pts,scat_amp,psipts,k0);
 psi3d_tot = (psi3d_inc+psi3d_scat)./(abs(psi3d_inc+
psi3d_scat)); % Total field
 else
 psi3d_tot = (psi3d_inc)./(abs(psi3d_inc)); % Total field
 end
 EVR = EV(:,nsignal+1:L); % reduced R
 SVIR = SVI(nsignal+1:L,nsignal+1:L); % noise evalues
 pev = TR_Pevm(nsignal,EVR,SVIR,psi3d_tot);
 pow_pev=abs(pev);
 MFP(jy,ix,kz)=pow_pev; % EIG MFP
 end
 end
end
disp(['Maximum / mean = ' num2str(max(MFP(:))/mean(MFP(:)))])
[MFPmax,indmax] = max3d(MFP);

disp(['Maximum = ' num2str(MFPmax) ' at (' num2str(xs(indmax(1))) ', '
num2str(ys(indmax(2))) ', ' num2str(zs(indmax(3))) ')'])
% plot 2D images
%for iz=1:Nz
% MFPout=MFP(:,:,iz);
% plot_EIGMF;
%end
isoplot_EIGMF

%:::
% Function: TRT_Image
%
% PURPOSE: This is the routine to display images from a given run by
% display a variety of Z-slices
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Threshold
% OUTPUTS: Thesholded image and location
%
%
%:::
%
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** Image DISPLAY *****')
disp(' ')

% initialize parms
cmap='jet';

fig_name=['POWER Displacement Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
colormap(cmap);
CTable_Menu
% start loop for image selection
IZnumb=input(['Image No.? (' num2str(Nz) ' Z-slices===> 0 to exit) > ']);

while IZnumb~=0
 MFPout=MFP(:,:,IZnumb);
 imagesc(xs,(ys),(MFPout));
 axis xy
 colorbar;
 xlabel('X-position (Wavelengths)')
 ylabel('Y-position (Wavelengths)')
 title(['Source Power Image: Z = ' num2str(zs(IZnumb)) ' (Wavelengths)'])
 grid on
 IZnumb=input(['NEW Image No.? (' num2str(Nz) ' Z-slices===> 0 to exit) >
']);
end

disp('*** DISPLAY Over ***')

%:::
% Function: TRT_Image_locate
%
% PURPOSE: This is the routine to locate pixel positions
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Threshold
% OUTPUTS: Thesholded image and location
%
%
%:::
%
% PIXEL Location
%
%:::
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** Image PIXEL Locator *****')
disp(' ')
IZnumb=input(['Image No.? (' num2str(Nz) ' Z-slices) > ']);

% display selected image
cmap='jet';
fig_name=['POWER Displacement Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
colormap(cmap);
MFPout=MFP(:,:,IZnumb);
imagesc(xs,(ys),(MFPout));
axis xy
colorbar;
CTable_Menu

xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
title(['Source Power Image: Z = ' num2str(zs(IZnumb)) ' (Wavelengths)'])
grid on
% find desired pixel location
disp('*** Press LEFT Mouse Button to select and RETURN to exit and PRINT ***')
ginput

%:::
% Function: TRT_Image_thresh
%
% PURPOSE: This is the routine to threshold the selected image in order
% to perform source detection
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Threshold
% OUTPUTS: Thesholded image and location
%
%
%:::
%
% DETECT & Localize Source
%
%:::
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** Image THRESHOLD Detector *****')
disp(' ')

IZnumb=input(['Image No.? (' num2str(Nz) ' Z-slices) > ']);
% display selected image
cmap='jet';
fig_name=['POWER Displacement Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
colormap(cmap);
MFPout=MFP(:,:,IZnumb);
imagesc(xs,(ys),(MFPout));
axis xy
colorbar;
CTable_Menu

xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
title(['Source Power Image: Z = ' num2str(zs(IZnumb)) ' (Wavelengths)'])
grid on
tyn='y';
while strcmp(tyn,'y')
 threshold=input('Threshold Value? (Percent of Maximum Pixel (e.g. 95%) >
');
 threshold=threshold/100;
 Image_Plot=figure('Name','Threshold','inter','on','units','norm',...
 'NumberTitle','off','Position',[.4,.035,.55,.85],'Color',[.8 .8 .8]);
 colormap('gray')
 Tbf=IMAGEthreshold((MFPout),threshold); % perform the
thresholding
 posit=get(gca,'Position');
 delete(gca);
 axes('Position',posit);
 imagesc(xs,ys,(Tbf)); % TR
 axis xy
 xlabel('X-position (Wavelengths)')
 ylabel('Y-position (Wavelengths)')
 title(['Source Power Image: Z = ' num2str(zs(IZnumb)) ' (Wavelengths)'])
 CTable_Menu
 disp('*** Press LEFT Mouse Button to select and RETURN to exit and PRINT
***')
 ginput
 tyn=input('New Threshold? (y or n) > ','s');
end

%:::
% Function: TRT_Image_CYCLE
%
% PURPOSE: This is the routine to display images from a given run by
% display a variety of Z-slices
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Threshold
% OUTPUTS: Thesholded image and location
%
% COPYRIGHT: Work copyrighted under the auspices of the University
% of California for the U.S. Department of Energy under
% contract number W-7405-ENG-36.
%
%:::
%
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** Image CYCLE DISPLAY *****')
disp(' ')

% initialize parms
cmap='jet';
fig_name=['POWER Displacement Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
colormap(cmap);
CTable_Menu
% start loop for image selection
IZnumbSrt=input(['START Image No.? (' num2str(Nz) ' Z-slices===> 0 to exit)
> ']);
IZnumbStop=input(['STOP Image No.? (' num2str(Nz) ' Z-slices===> 0 to exit)
> ']);

for IZnumb=IZnumbSrt:IZnumbStop
 MFPout=MFP(:,:,IZnumb);
 imagesc(xs,(ys),(MFPout));
 axis xy
 colorbar;
 xlabel('X-position (Wavelengths)')
 ylabel('Y-position (Wavelengths)')
 title(['Source Power Image: Z = ' num2str(zs(IZnumb)) ' (Wavelengths)'])
 grid on
 drawnow
 pause(0.5)
end

disp('*** CYCLIC DISPLAY Over ***')

%:::
% Function: TRT_Load_Data
%
% PURPOSE: This is the routine to load experimental data
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 13 SEPTEMBER 2007
% MODIFY DATE: 13 SEPTEMBER 2007
%
%
% AUTHOR: D. H. Chambers
%
% INPUTS: Main TRT Parms
% OUTPUTS: MF and TR run parameters
%
%
%:::
% Display RUN Parameters
%:::
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** LOAD DATA *****')
disp(' ')
%---
% SET-UP Initial Parameters
%---

Nscats = 0;scat_pts = [0 0 0];scat_amp = 1; % Scatterer Parms
(placeholders)
load Exp_data f0 MRMf0 tr_receiver tr_transmit tone_data source_tru tone_cov %
Load data
psi3d_tot_dat = tone_data;
K3d = MRMf0;
Nelem = length(tr_transmit);
c0 = 330; % Reference speed of sound in air
(m/s)
k0 = 2*pi*f0/c0;
problem_pts = [tr_receiver ; tr_transmit ; source_tru];
problem_max = max(problem_pts);
problem_min = min(problem_pts);
problem_size = problem_max - problem_min;
TRT_Set_MFParms % MF Parms

% array parms
disp(' ')
disp(' ***** TR ARRAY Parameters *****')
disp(' ')
disp('TX-Coordinates: (x, y, z) ')
tr_transmit
disp(' ')
disp('RX-Coordinates: (x, y, z) ')
tr_receiver
disp(' ')
disp(['No. of Elements = ' num2str(Nelem)])
% source parms
disp(' ')
disp(' ***** TONE SOURCE Parameters *****')
disp(' ')
disp(['X-coordinate = ' num2str(source_tru(1))])
disp(['Y-coordinate = ' num2str(source_tru(2))])
disp(['Z-coordinate = ' num2str(source_tru(3))])
disp(' ')
disp(['Wavenumber = ' num2str(k0) ' (radians/meter)'])
plot_data_setup

% Calculate model incident field
psi3d_inc_dat = field_inc(tr_receiver,source_tru,k0);

disp(' ')
disp('*** Data loading complete ***')

%:::
% Function: TRT_MEM_MF
%
% PURPOSE: This is the routine to run TRT Maximum Entropy Method (MEM)
% MF processor
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT MEM MF Parms
% OUTPUTS: Source run parameters
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%:::
%
% Calculate MFP (Imaging)
%
%:::
% CALCULATE COVARIANCE matrix with white noise (regularization) term:
% (Ryy+alph*I) to be inverted
%:::
%
disp(' ')
disp(' ***** MEM Matched-Field Detector *****')

disp(' ')
% alph=input('White Noise Regularization? (alpha) = ');
% Calculate total field if simulated. Otherwise assume given by data.
if Nscats>0
 sim_cov = (psi3d_inc_dat+psi3d_scat_dat)*(psi3d_inc_dat + psi3d_scat_dat)';
 snr = input('Enter regularization SNR: ');
 alph = (10^(-snr/20))*norm(sim_cov,'fro');
 cov_psi3d_tot_dat = sim_cov + alph*eye(length(tr_receiver));
else
 alph=input('White Noise Regularization? (alpha) = ');
 cov_psi3d_tot_dat = tone_cov + alph*eye(length(tr_receiver));
end
[EV,SV,EVT] = svd(cov_psi3d_tot_dat);
SVI=0.0*SV;
L=length(diag(SV));
for i=1:length(diag(SV))
 SVI(i,i)=1/SV(i,i);
end

ifield=input('Matching Field? (all or inc) > ','s');
Sref=input(['Reference Sensor No.? (' num2str(Nelem) ' sensors) = ']);
%:::
% Begin IMAGING loops
%:::

MFP = zeros(Ny,Nx,Nz); %EFB

for ix=1:Nx
 xs(ix)=xstart+(ix-1)*dx;
 Modulus(ix,10,Nx);
 for jy=1:Ny
 ys(jy)=ystart+(jy-1)*dy;
 for kz=1:Nz
 zs(kz)=zstart+(kz-1)*dz;
 source=[xs(ix) ys(jy) zs(kz)];
 psi3d_inc = field_inc(tr_receiver,source,k0); % Incident field
 if strcmp(ifield,'all')
 psipts = solvefl(scat_pts,scat_amp,source,k0);
 psi3d_scat = fieldfl(tr_receiver,scat_pts,scat_amp,psipts,k0);
 psi3d_tot = (psi3d_inc+psi3d_scat)./(abs(psi3d_inc+
psi3d_scat)); % Total field
 else
 psi3d_tot = (psi3d_inc)./(abs(psi3d_inc)); % Total field
 end
 pow_mem = TR_Pmemm(L,Sref,EV,SVI,psi3d_tot,1);
 pow_mem=abs(pow_mem);
 MFP(jy,ix,kz)=pow_mem; % MEM MFP
 end
 end
end
disp(['Maximum / mean = ' num2str(max(MFP(:))/mean(MFP(:)))])
[MFPmax,indmax] = max3d(MFP);
disp(['Maximum = ' num2str(MFPmax) ' at (' num2str(xs(indmax(1))) ', '
num2str(ys(indmax(2))) ', ' num2str(zs(indmax(3))) ')'])
% plot 2D images
%for iz=1:Nz
% MFPout=MFP(:,:,iz);

% plot_MVDRMF;
%end
isoplot_MEMMF

function TRT_Menu(dummy);
%:::
% Function: TRT_Menu
%
% PURPOSE: This is the routine to provide the basic TRT pull-down menu for
ops
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 15 APR 2007
% MODIFY DATE: 15 APR 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Pull-Down Menu System
% OUTPUTS: Menu Operations
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%
%:::
% System (Window/Menu) Globals
%:::
%
%::
% Define Global data
%::
%defineGlobals;
%---

% Start-UP Screen/Supervisor
%---

clc;
dummy=' ';
colr_fgd='b';

scrn=get(0,'screensize');
scrn_fact=max(scrn);
TRT0=figure('Name','TIME-REVERSAL TONE (TRT) Operations: SUPERVISOR',...
 'inter','on','units','norm',...
 'NumberTitle','off','Position',...
 [15/scrn_fact,0.9*scrn_fact/scrn_fact 0.98*scrn(3)/scrn_fact
0.025*scrn(4)/scrn_fact],...
 'Color','y');

%**
%**************** TRT MAIN Menu System *********************
%**

%---
% Data Operations Menu
%---

TRTmenu0=uimenu(TRT0,'Label','DATA','ForegroundColor',colr_fgd);
DATsimA=uimenu(TRTmenu0,'Label','SIM
Scatterers/Source','Callback','TRT_Scatters_Run;');
DATlodA=uimenu(TRTmenu0,'Label','LOAD Data','Callback','TRT_Load_Data;');
DATedit=uimenu(TRTmenu0,'Label','EDIT Parameters');
DATedsrc=uimenu(DATedit,'Label','SOURCE Parms','Callback','eval(''edit
TRT_Set_Source'');');
DATedsct=uimenu(DATedit,'Label','SCATTERER Parms','Callback','eval(''edit
TRT_Set_Scatts'')');
DATedary=uimenu(DATedit,'Label','TR_ARRAY Parms','Callback',...
 ['disp(''|||| SET TR ARRAY Coordinates ||||''),','eval(''edit
TRT_Set_TRarray'')']);
DATedMF=uimenu(DATedit,'Label','MF Parms','Callback',...
 ['disp(''|||| EDIT MF RUN PARAMETERS ||||''),','eval(''edit
TRT_Set_MFParms'')']);

%---
% Time-Reversal Processing Operations Menu
%---

TRTmenu1=uimenu(TRT0,'Label','TR_PROCESS','ForegroundColor',colr_fgd);
TRarray=uimenu(TRTmenu1,'Label','EDIT TR_Array Parms','Callback',...
 ['disp(''|||| SET TR ARRAY Coordinates ||||''),','eval(''edit
TRT_Set_TRarray'')']);
TRResp=uimenu(TRTmenu1,'Label','TR Response/SVD Matrix','Callback',...
 ['disp(''|||| ESTIMATE TR RESPONSE MATRIX/SOURCES
||||''),','TRT_ResponseSVD_Run;']);
TR_ROC=uimenu(TRTmenu1,'Label','TR ROC','Callback',...
 ['disp(''|||| TR SOURCE DETECTION ||||''),','TRT_ROC_RUN;']);
TRDetect=uimenu(TRTmenu1,'Label','TR Detection','Callback',...
 ['disp(''|||| TR SOURCE DETECTION ||||''),','TRT_SDetection_Run;']);

%---
% Matched-Field Processing Operations Menu
%---

TRTmenu2=uimenu(TRT0,'Label','MF_PROCESS','ForegroundColor',colr_fgd);
MFset=uimenu(TRTmenu2,'Label','EDIT MF Run Parameters','Callback',...
 ['disp(''|||| EDIT RUN PARAMETERS ||||''),','eval(''edit
TRT_Set_MFParms'')']);
MFconv=uimenu(TRTmenu2,'Label','Conventional MF','Callback',...
 ['disp(''|||| CONVENTIONAL MF PROCESSOR ||||''),','TRT_Conv_MF;']);
MFmvdr=uimenu(TRTmenu2,'Label','MVDR MF','Callback',...
 ['disp(''|||| MINIMUM VARIANCE DISTORTIONLESS RESPONSE (MVDR) MF PROCESSOR
||||''),','TRT_MVDR_MF;']);
MFmem=uimenu(TRTmenu2,'Label','MEM MF','Callback',...
 ['disp(''|||| MAXIMUM ENTROPY (MEM) MF PROCESSOR ||||''),','TRT_MEM_MF;']);
MFmusic=uimenu(TRTmenu2,'Label','MUSIC MF','Callback',...
 ['disp(''|||| MULITIPLE SIGNAL CLASSIFICATION (MUSIC) MF PROCESSOR
||||''),','TRT_MUSIC_MF;']);
MFeig=uimenu(TRTmenu2,'Label','EIG MF','Callback',...
 ['disp(''|||| EIGENVECTOR MF PROCESSOR ||||''),','TRT_EIG_MF;']);

%---
% Analyze Operations Menu
%---

TRTmenu3=uimenu(TRT0,'Label','ANALYZE','ForegroundColor',colr_fgd);
ANAimage=uimenu(TRTmenu3,'Label','DISPLAY Image','Callback',...
 ['disp(''|||| IMAGE ANALYSIS ||||''),','TRT_Image;']);
ANAimage=uimenu(TRTmenu3,'Label','DISPLAY Image Slices','Callback',...
 ['disp(''|||| IMAGE SLICE ANALYSIS ||||''),','TRT_Image_Zcycle;']);
ANAvol=uimenu(TRTmenu3,'Label','DISPLAY Isoplot','Callback',...
 ['disp(''|||| 3D ISOPLOT ANALYSIS ||||''),','TRT_Volume;']);
ANAthresh=uimenu(TRTmenu3,'Label','THRESHOLD Image (Detection)','Callback',...
 ['disp(''|||| IMAGE THRESHOLD ANALYSIS ||||''),','TRT_Image_thresh']);
ANAlocate=uimenu(TRTmenu3,'Label','LOCALIZE Image (Pixels)','Callback',...
 ['disp(''|||| LOCATION IMAGE ANALYSIS ||||''),','TRT_Image_locate;']);

%---
% EXIT Operations Menu
%---
TRTmenu6=uimenu(TRT0,'Label','EXIT','ForegroundColor',colr_fgd);
bye=uimenu(TRTmenu6,'Label','Bye','ForegroundColor',colr_fgd,...
 'Callback','close all');
%---

disp(' ')
disp('Begin TRT Processing---Select Menu Operation')
disp(' ')

%:::
% Function: TRT_MUSIC_MF
%
% PURPOSE: This is the routine to run TRT Multiple Signal Classification
% (MUSIC) MF processor
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT MUSIC MF Parms
% OUTPUTS: Source run parameters
%
%
%:::
%
% Calculate MFP (Imaging)
%
%:::
% CALCULATE COVARIANCE matrix with white noise (regularization) term:
% (Ryy+alph*I) to be inverted
%:::
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** MUSIC Matched-Field Detector *****')
disp(' ')
% alph=input('White Noise Regularization? (alpha) = ');
% Calculate total field if simulated. Otherwise assume given by data.
if Nscats>0
 sim_cov = (psi3d_inc_dat+psi3d_scat_dat)*(psi3d_inc_dat + psi3d_scat_dat)';
 snr = input('Enter regularization SNR: ');
 alph = (10^(-snr/20))*norm(sim_cov,'fro');
 cov_psi3d_tot_dat = sim_cov + alph*eye(length(tr_receiver));
else
 alph=input('White Noise Regularization? (alpha) = ');
 cov_psi3d_tot_dat = tone_cov + alph*eye(length(tr_receiver));
end
[EV,SV,EVT] = svd(cov_psi3d_tot_dat);
SVI=0.0*SV;
L=length(diag(SV));
for i=1:length(diag(SV))
 SVI(i,i)=1/SV(i,i);
end

ifield=input('Matching Field? (all or inc) > ','s');
nsignal=input('No. of Sources? (Subspace Dimension) = ');
%:::
% Begin IMAGING loops
%:::

MFP = zeros(Ny,Nx,Nz); %EFB

for ix=1:Nx
 xs(ix)=xstart+(ix-1)*dx;
 Modulus(ix,10,Nx);
 for jy=1:Ny
 ys(jy)=ystart+(jy-1)*dy;
 for kz=1:Nz
 zs(kz)=zstart+(kz-1)*dz;
 source=[xs(ix) ys(jy) zs(kz)];
 psi3d_inc = field_inc(tr_receiver,source,k0); % Incident field
 if strcmp(ifield,'all')
 psipts = solvefl(scat_pts,scat_amp,source,k0);
 psi3d_scat = fieldfl(tr_receiver,scat_pts,scat_amp,psipts,k0);
 psi3d_tot = (psi3d_inc+psi3d_scat)./(abs(psi3d_inc+
psi3d_scat)); % Total field
 else
 psi3d_tot = (psi3d_inc)./(abs(psi3d_inc)); % Total field
 end
 EVR = EV(:,nsignal+1:L); % reduced R
 % SVIR = SVI(nsignal+1:L,nsignal+1:L); % noise
evalues
 % ISV =SVI;
 % for i=1:L
 % ISV(i,i)=1; %force
diag to unity for music
 % end
% SVIR = ISV(nsignal+1:L,nsignal+1:L); % noise evalues
 pwmusic = TR_Pmusicm(nsignal,EVR,psi3d_tot);

 pow_music=abs(pwmusic);
 MFP(jy,ix,kz)=pow_music; % MUSIC MFP
 end
 end
end
disp(['Maximum / mean = ' num2str(max(MFP(:))/mean(MFP(:)))])
[MFPmax,indmax] = max3d(MFP);
disp(['Maximum = ' num2str(MFPmax) ' at (' num2str(xs(indmax(1))) ', '
num2str(ys(indmax(2))) ', ' num2str(zs(indmax(3))) ')'])
% plot 2D images
%for iz=1:Nz
% MFPout=MFP(:,:,iz);
% plot_MUSICMF;
%end
isoplot_MUSICMF

%:::
% Function: TRT_MVDR_MF
%
% PURPOSE: This is the routine to run TRT Minimum Variance Distortionless
% Response (MVDR) MF processor
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT MVDR MF Parms
% OUTPUTS: Source run parameters
%
%
%:::
%
% Calculate MFP (Imaging)
%
%:::
% CALCULATE COVARIANCE matrix with white noise (regularization) term:
% (Ryy+alph*I) to be inverted
%:::
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** MVDR Matched-Field Detector *****')
disp(' ')
% alph=input('White Noise Regularization? (alpha) = ');
% Calculate total field if simulated. Otherwise assume given by data.
if Nscats>0
 sim_cov = (psi3d_inc_dat+psi3d_scat_dat)*(psi3d_inc_dat + psi3d_scat_dat)';
 snr = input('Enter regularization SNR: ');
 alph = (10^(-snr/20))*norm(sim_cov,'fro');
 cov_psi3d_tot_dat = sim_cov + alph*eye(length(tr_receiver));
else
 alph=input('White Noise Regularization? (alpha) = ');
 cov_psi3d_tot_dat = tone_cov + alph*eye(length(tr_receiver));
end
[EV,SV,EVT] = svd(cov_psi3d_tot_dat);
SVI=0.0*SV;
L=length(diag(SV));
for i=1:length(diag(SV))
 SVI(i,i)=1/SV(i,i);
end

ifield=input('Matching Field? (all or inc) > ','s');

%:::
% Begin IMAGING loops
%:::

MFP = zeros(Ny,Nx,Nz); %EFB

for ix=1:Nx
 xs(ix)=xstart+(ix-1)*dx;
 Modulus(ix,10,Nx);
 for jy=1:Ny
 ys(jy)=ystart+(jy-1)*dy;
 for kz=1:Nz
 zs(kz)=zstart+(kz-1)*dz;
 source=[xs(ix) ys(jy) zs(kz)];
 psi3d_inc = field_inc(tr_receiver,source,k0); % Incident field
 if strcmp(ifield,'all')
 psipts = solvefl(scat_pts,scat_amp,source,k0);
 psi3d_scat = fieldfl(tr_receiver,scat_pts,scat_amp,psipts,k0);
 psi3d_tot = (psi3d_inc+psi3d_scat)./(abs(psi3d_inc+
psi3d_scat)); % Total field
 else
 psi3d_tot = (psi3d_inc)./(abs(psi3d_inc)); % Total field
 end
 pow_mvdr = TR_Pmvdr(psi3d_tot,EV,SVI,1);
 mvdr=abs(pow_mvdr);
 MFP(jy,ix,kz)=mvdr; % MVDR MFP
 end
 end
end
disp(['Maximum / mean = ' num2str(max(MFP(:))/mean(MFP(:)))])
[MFPmax,indmax] = max3d(MFP);
disp(['Maximum = ' num2str(MFPmax) ' at (' num2str(xs(indmax(1))) ', '
num2str(ys(indmax(2))) ', ' num2str(zs(indmax(3))) ')'])

% plot 2D images
%for iz=1:Nz
% MFPout=MFP(:,:,iz);
% plot_MVDRMF;
%end
isoplot_MVDRMF

%:::
% Function: TRT_ResponseSVD_Run
%
% PURPOSE: This is the routine to run TR response
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT MF Parms
% OUTPUTS: Source run parameters
%
%
%:::
%
% calculate TR MFP
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

if Nscats>0
% Now calculate multistatic response matrix for TR array system
 K3d = make_Kfl(tr_receiver,tr_transmit,scat_pts,scat_amp,k0);
% Add "noise" to K3d
 K3d_n = K3d + 1.e-16*randn(length(tr_receiver));
else

 K3d_n = K3d;
end
% Apply svd to K3d_n and calculate dot products between U vectors and total
% field from source.
[U3d,S3d,V3d] = svd(K3d_n);
src_projections = psi3d_tot_dat'*U3d;
% plot results
%
figure('Name','TR','inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
xax=1:length(src_projections);
%subplot(2,1,1)
%plot(xax,abs(src_projections),'b',xax,abs(src_projections),'or')
%title('Time-Reversal Source Detection')
%ylabel('Power')
%xlabel('SVD Index')
%subplot(2,1,2)
semilogy(xax,diag(S3d),'b',xax,diag(S3d),'or')
title('Singular Values')
ylabel('Singular Value')
xlabel('SVD Index')

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
% :::
% This is a file to calculate the receiver-operating-characteristic
% for the case of a known signal in white gaussian noise
% :::

clear Nvalues delta_thresh thrsh_start
% :::
% Initialize ROC parameters & arrays
% :::
Nvalues=50;delta_thresh=.05;thrsh_start=0;
%
Pfa=zeros(Nvalues,1);Pdet=Pfa;Pthresh=Pfa;thrsh=Pfa;
% :::
E=1; % data normalized to unity (std=1)
% :::
db=input('Desired SNR (db)? = ');
%
snr=10^(db/20); % calculate SNR
Nvar = E/snr; % Calculate Noise variance from snr
% :::
% Main LOOP
% :::

for i=1:Nvalues
 thrsh(i)=(i-1)*delta_thresh+delta_thresh+thrsh_start; % loop over thr
 x=(snr*log(thrsh(i))+0.5*Nvar)/sqrt(2); % calc errfcn x
 Pfa(i)=0.5*erfc(x); % calc Pfa
 Pdet(i)=0.5*erfc((x-Nvar/sqrt(2))); % calc Pdet
 Pthresh(i)=exp((sqrt(2)*Nvar)*erfcinv(2*Pfa(i)) ... % calc thresh
 -.5*Nvar.^2);

end
Pfaplot = Pfa;
%
%
% :::
% plot final results
% :::
figure('Name','TR ROC','inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
subplot(2,1,1)
plot(Pfa,Pdet,(Pfa),Pdet,'ok',Pfa,Pdet,'+r')
xlabel('False Alarm Probability (Pfa)')
ylabel('Detection Probability (Pdet)')
plt=sprintf('Receiver Operating Characteristic for SNR (dB) = %g ,dT = %g and
NVariance = %g',db,delta_thresh,Nvar);
title(plt)
subplot(2,1,2)
stem(Pfa,Pthresh);hold on;plot(Pfa,Pthresh,'+r');hold off
ylabel('Threshold')
xlabel('False Alarm Probability (Pfa)')
title('Threshold Values')
disp(' ************************')
disp('**** Move Crosehairs to Get Desired Threshold Value (at Pdet, Pfa) ****')
disp('*** Hit ENTER key to return and get values ****')
% ginput
[Pfa, thresh_set] = ginput

%:::
% Function: TRT_Scatters_Run
%
% PURPOSE: This is the routine to run scatterer simulation
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Parms
% OUTPUTS: Scatterer run parameters
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%:::
% Display RUN Parameters
%:::
%
disp(' ')
disp(' ***** SCATTERER/TONE_SOURCE Run *****')
disp(' ')
%---
% SET-UP Initial Parameters
%---
TRT_Set_Source % Source Parms
TRT_Set_TRArray % Set Tx/Rx TR_array locations

TRT_Set_Scatts % Scatterer Parms
TRT_Set_MFParms % MF Parms

Nscats = length(scat_amp); % no. scatts
disp(['No. of Scatterers is: ' num2str(Nscats)])
% Summarize settings
%disp(' ')
%disp(' ***** SCATTERER Parameters *****')
%disp(' ')
%disp('Scatterer-Coordinates: (x, y, z) ')
%scat_pts
%disp(' ')
%disp('Scatterer-Amplitudes: ')
%scat_amp
% array parms
disp(' ')
disp(' ***** TR ARRAY Parameters *****')
disp(' ')
disp('TX-Coordinates: (x, y, z) ')
tr_transmit
disp(' ')
disp('RX-Coordinates: (x, y, z) ')
tr_receiver
disp(' ')
disp(['No. of Elements = ' num2str(Nelem)])
% source parms
disp(' ')
disp(' ***** TONE SOURCE Parameters *****')
disp(' ')
disp(['X-coordinate = ' num2str(source_tru(1))])
disp(['Y-coordinate = ' num2str(source_tru(2))])
disp(['Z-coordinate = ' num2str(source_tru(3))])
disp(' ')
disp(['Wavenumber = ' num2str(k0) ' (radians/meter)'])
disp(['Wavelength = ' num2str(c0/f0) ' (meters)'])
plot_scatts
%:::
% RUN simulators
%:::
% The source field measured by the TR receivers is the sum of the field
% emitted by the source in free space plus the field scattered from the
% point scatterers.

psi3d_inc_dat = field_inc(tr_receiver,source_tru,k0); % Incident field

% Calculate field at scatterers and resulting scattered field at TR
% receivers.

psipts_dat = solvefl(scat_pts,scat_amp,source_tru,k0);
psi3d_scat_dat = fieldfl(tr_receiver,scat_pts,scat_amp,psipts_dat,k0);
psi3d_tot_dat = psi3d_inc_dat+ psi3d_scat_dat; % Total field

disp(' ')
disp('*** Scatterer/Source SIMULATION complete: (fields)
psipts_dat,psi3d_scat_dat,psi3d_tot_dat ***')

%:::
% Function: TRT_SDetection_Run
%
% PURPOSE: This is the routine to detect a source using the signal or
% noise subspace TR response
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 29 JUN 2007
% MODIFY DATE: 29 JUN 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: psi3d_scat = synthesized scattered field (input)
% U3d = TR eigenvector matrix
% U3d = TR eigenvector matrix
% OUTPUTS: Source run parameters
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%:::
%
% calculate TR MFP
%
Lelem=length(psi3d_tot_dat);
Ydat=psi3d_tot_dat;
Ydat=Ydat/std(Ydat); % unit variance signal level
for i=1:Lelem
 Nsig=(U3d(:,i))';

 TRSproj(i)=Nsig*Ydat;
 Ptrsproj(i)=abs(TRSproj(i)); % Magnitude is Gaussian for high SNR
end
% Note: PDF of magnitude is Rician in general but is approximated as Gaussian
here.
% Approximation becomes exact for high SNR.
reply=input('\nUse Graphically Captured Threshold (''g''), or Enter Threshold
Manually (''m'') ? ', 's');
disp(' ');
if(reply == 'm')
 thresh_set=input('Threshold Level? > ');
end
thresh_plt=thresh_set*ones(Lelem+2,1);
% plot results
%
figure('Name','TR','inter','on','units','norm',...
 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
xax=1:Lelem;
h1=stem(Ptrsproj,'b');
hold on
h2=stem(Ptrsproj,'+r');
h3=plot((0:(Lelem+1))',thresh_plt,'--g','linewidth',3);
hold off
title('Time-Reversal Source Detection')
ylabel('Likelihood')
xlabel('Signal Vector Index')
% legend(' ','Likelihood','Threshold')
legend([h2 h3],'Likelihood','Threshold')
grid on;hold on;

%:::
% Function: TRT_Set_MFParms
%
% PURPOSE: This is the routine to set MF run parameters
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT MF Parms
% OUTPUTS: MF run parameters
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%:::
%
% loop parms for targeted source (x,y,z) positions
%
% Create START and STOP points from true source position and (x,y,z) size
% of imaging volume
%
% Enter size of imaging region as a fraction of problem size
disp(['Dimensions of problem size are ' num2str(problem_size)])
fracimage = input('Enter image size as fraction of problem size: ');
if length(fracimage)==1
 fracimage = fracimage*[1 1 1];

end
Ximagesize = fracimage(1)*problem_size(1);
Yimagesize = fracimage(2)*problem_size(2);
Zimagesize = fracimage(3)*problem_size(3);
%Ximagesize = 5;
%Yimagesize = 5;
%Zimagesize = 3;
% NO. IMAGE VOXELS
Nx=51;
Ny=51;
Nz=51;
% START Point for imaging volume
xstart=source_tru(1)-.5*Ximagesize;
ystart=source_tru(2)-.5*Yimagesize;
zstart=source_tru(3)-.5*Zimagesize;
% STOP Point for imaging volume
xstop = xstart + Ximagesize;
ystop = ystart + Yimagesize;
zstop = zstart + Zimagesize;
% COORDINATE Increments
dx=(xstop - xstart)/(Nx-1);
dy=(ystop - ystart)/(Ny-1);
dz=(zstop - zstart)/(Nz-1);
% Summarize settings
disp(' ')
disp(' ***** MF Imaging Parameters *****')
disp(' ')
disp(['X-coordinate Range: START = ' num2str(xstart) ' STOP = ' num2str(xstop) '
INCR = ' num2str(dx)])
disp(['Y-coordinate Range: START = ' num2str(ystart) ' STOP = ' num2str(ystop) '
INCR = ' num2str(dy)])
disp(['Z-coordinate Range: START = ' num2str(zstart) ' STOP = ' num2str(zstop) '
INCR = ' num2str(dz)])

%:::
% Function: TRT_Set_Scatts
%
% PURPOSE: This is the routine to set scatterer parameters
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 13 SEPTEMBER 2007 (DHC)
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Parms
% OUTPUTS: Scatterer run parameters
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%:::
%
% loop parms for targeted source:
%
% SCATTERER POSITIONS
% Nscats = 50; % Number of scatterers
%
% Distribute scatter points randomly within volume defined by spatial
% extent of TR array and source (problem region)
% First calculate region containing problem
problem_pts = [tr_receiver ; tr_transmit ; source_tru];
problem_max = max(problem_pts);

problem_min = min(problem_pts);
problem_size = problem_max - problem_min;
problem_center = .5*(problem_max+problem_min);
indsize0 = find(problem_size==0); % Is problem region linear or planar
% For planar problems extend plane outward +/-10% of smaller plane
% dimension
if length(indsize0)==1
 psizesort = sort(problem_size(:));
 problem_size(indsize0) = .2*psizesort(2);
end
% For linear problems extend line outward +/-10% of the length
if length(indsize0)==2
 psizesort = sort(problem_size(:));
 problem_size(indize0) = .2*psizesort(3);
end
%
% Input number of scatterers
%
disp(['Volume scattering region is ' num2str(prod(problem_size))])
Nscats = input('Enter number of scatterers in volume: ');
%
%
scat_pts = 2*rand(Nscats,3)-1;
% Scatterers occupies volume defined by TR array and source point
scat_pts(:,1) = problem_center(1) + .5*problem_size(1)*scat_pts(:,1);
scat_pts(:,2) = problem_center(2) + .5*problem_size(2)*scat_pts(:,2);
scat_pts(:,3) = problem_center(3) + .5*problem_size(3)*scat_pts(:,3);
% Shift scatterers 5% towards source and away from array
% This creates a scatterer-free buffer zone around array and makes sure
% there are no straight paths between source and TR array elements that do
% not traverse scatterer region.
tr_center = mean([tr_receiver ; tr_transmit]);
scatshift = .05*(source_tru-tr_center);
scat_pts = scat_pts+ones(Nscats,1)*scatshift;
% SCATTERER INTENSITY (Amplitude) PARAMETERS
scat_amp = rand(Nscats,1);

% Alternatively, one can build scat_pts and scat_amp arrays directly, as
% below.
%scat_pts = [4.0286 -1.6530 -0.5993; ...
% 1.1581 -4.2181 -0.3265; ...
% -4.9488 2.4888 2.4265; ...
% 6.6979 7.4425 -2.9775; ...
% 1.4475 -2.7324 -0.7483; ...
% 7.3946 -4.2338 -2.1738; ...
% 5.6901 -1.2317 -0.3967; ...
% -3.4207 3.3151 7.6758; ...
% -6.4597 -4.2710 -3.0324; ...
% -0.3646 -6.0066 -6.7368];
% SCATTERER INTENSITY (Amplitude) PARAMETERS
%scat_amp = [0.2850 0.0693 0.1821 0.1458 0.2674 0.2286 0.1369 0.0056 0.2464
0.1334]'; % scatt amps
%Nscats = length(scat_amp); % no. scatts

% Summarize settings
disp(' ')
disp(' ***** Scatterer parameters set ******')

disp(' ')
%disp(' ***** SCATTERER Parameters *****')
%disp(' ')
%disp('Scatterer-Coordinates: (x, y, z) ')
%scat_pts
%disp(' ')
%disp('Scatterer-Amplitudes: ')
%scat_amp

%:::
% Function: TRT_Set_Source
%
% PURPOSE: This is the routine to set source parameters
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT MF Parms
% OUTPUTS: Source run parameters
%
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
%:::
%
% loop parms for targeted source:
%
% SOURCE POSITION
source_tru=[6 1 1.5]; % true source location
% SOURCE PARAMETERS
f0 = 165; % source frequency
c0 = 330; % medium sound speed
k0 = 2*pi*f0/c0;
% k0=pi; % source wave number: k0=2*pi*f/c0
% Summarize settings

disp(' ')
disp(' ***** TONE SOURCE Parameters *****')
disp(' ')
disp(['X-coordinate = ' num2str(source_tru(1))])
disp(['Y-coordinate = ' num2str(source_tru(2))])
disp(['Z-coordinate = ' num2str(source_tru(3))])
disp(' ')
disp(['Wavenumber = ' num2str(k0) ' (radians/meter)'])
disp(['Wavelength = ' num2str(c0/f0) ' (meters)'])

%:::
% Function: TRT_Set_TRarray
%
% PURPOSE: This is the routine to set scatterer parameters
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TR array Parms
% OUTPUTS: TR array run parameters
%
%
%:::
%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%
%
% loop parms for targeted source:
%
% TRARRAY POSITIONS
% Time reversal array transmit element positions
tr_transmit = [zeros(11,1) (-4:.8:4)' zeros(11,1)];
tr_transmit = [tr_transmit ; zeros(10,2) [(-4:.8:-.8) (.8:.8:4)]'];
tr_receiver = tr_transmit; % Receive elements co-located with transmit elements.
Nelem = length(tr_transmit); % no. sensors
% Summarize settings
disp(' ')

disp(' ***** TR ARRAY Parameters *****')
disp(' ')
disp('TX-Coordinates: (x, y, z) ')
tr_transmit
disp(' ')
disp('RX-Coordinates: (x, y, z) ')
tr_receiver
disp(' ')
disp(['No. of Elements = ' num2str(Nelem)])

%:::
% Function: TRT_Volume
%
% PURPOSE: This is the routine to display volumes from a given run
%
%
% SOURCE: Matlab M-files
% VERSION: 1.0
% DATE: 07 MAY 2007
% MODIFY DATE: 07 MAY 2007
%
%
% AUTHOR: J. V. Candy
%
% INPUTS: Main TRT Volume
% OUTPUTS: Volume plot
%
%
%:::
%
%

%
% This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National
% Laboratory under Contract DE-AC52-07NA27344.
%
% Disclaimer
% This document was prepared as an account of work sponsored by an agency of the
United States government.
% Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their
% employees makes any warranty, expressed or implied, or assumes any legal
liability or responsibility for
% the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed,
% or represents that its use would not infringe privately owned rights.
Reference herein to any specific
% commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not
% necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States
% government or Lawrence Livermore National Security, LLC. The views and
opinions of authors expressed
% herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore
% National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
%

disp(' ')
disp(' ***** VOLUME DISPLAY *****')
disp(' ')

% initialize parms
fig_name=['VOLUME Data: '];
Image_Plot=figure('Name',fig_name,'inter','on','units','norm',...

 'NumberTitle','off','Position',[.445,.035,.55,.85],'Color',[.8 .8 .8]);
[MFPlevel,frac_level] = Level_Set(MFP,.02,1);
isoplot0(xs',ys',zs',MFP,MFPlevel,'c')
xlabel('X-position (Wavelengths)')
ylabel('Y-position (Wavelengths)')
zlabel('Z-position (Wavelengths)')
title('3D Volume')
grid on
Mmin=min(MFP(:));
Mmax=max(MFP(:));
disp(['Initial fractional ISO Level is ' num2str(frac_level)])
alpha=input('ISO _Level? (0 <Level< 1) (-1 to Exit) > ');
while alpha~=-1
 ILevel=(1-alpha)*Mmin+alpha*Mmax;
 figure(Image_Plot);
 isoplot0(xs',ys',zs',MFP,ILevel,'c')
 xlabel('X-position (Wavelengths)')
 ylabel('Y-position (Wavelengths)')
 zlabel('Z-position (Wavelengths)')
 title('3D ISO-SURFACE Plot')
 grid on
 alpha=input('New ISO Level? (0 <Level< 1) (-1 to Exit) > ');
end

disp('*** ISO PLOT Complete ***')

