Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

PDF Version Also Available for Download.

Description

Ti:sapphire has become the premier lasing medium material for use in solid-state femtosecond high-peak power laser systems because of its wide wavelength tuning range. With a tuneable range from 680 to 1100 nm, peaking at 800 nm, Ti:sapphire lasing crystals can easily be tuned to the required pump wavelength and provide very high pump brightness due to their good beam quality and high output power of typically several watts. Femtosecond lasers are used for precision cutting and machining of materials ranging from steel to tooth enamel to delicate heart tissue and high explosives. These ultra-short pulses are too brief to ... continued below

Physical Description

PDF-file: 3 pages; size: 98.5 Kbytes

Creation Information

Menapace, J A; Schaffers, K I; Bayramian, A J; Davis, P J; Ebbers, C A; Wolfe, J E et al. October 9, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Ti:sapphire has become the premier lasing medium material for use in solid-state femtosecond high-peak power laser systems because of its wide wavelength tuning range. With a tuneable range from 680 to 1100 nm, peaking at 800 nm, Ti:sapphire lasing crystals can easily be tuned to the required pump wavelength and provide very high pump brightness due to their good beam quality and high output power of typically several watts. Femtosecond lasers are used for precision cutting and machining of materials ranging from steel to tooth enamel to delicate heart tissue and high explosives. These ultra-short pulses are too brief to transfer heat or shock to the material being cut, which means that cutting, drilling, and machining occur with virtually no damage to surrounding material. Furthermore, these lasers can cut with high precision, making hairline cuts of less than 100 microns in thick materials along a computer-generated path. Extension of laser output to higher energies is limited by the size of the amplification medium. Yields of high quality large diameter crystals have been constrained by lattice distortions that may appear in the boule limiting the usable area from which high quality optics can be harvested. Lattice distortions affect the transmitted wavefront of these optics which ultimately limits the high-end power output and efficiency of the laser system, particularly when operated in multi-pass mode. To make matters even more complicated, Ti:sapphire is extremely hard (Mohs hardness of 9 with diamond being 10) which makes it extremely difficult to accurately polish using conventional methods without subsurface damage or significant wavefront error. In this presentation, we demonstrate for the first time that Magnetorheological finishing (MRF) can be used to compensate for the lattice distortions in Ti:sapphire by perturbing the transmitted wavefront. The advanced MRF techniques developed allow for precise polishing of the optical inverse of lattice distortions with magnitudes of about 70 nm in optical path difference onto one or both of the optical surfaces to produce high quality optics from otherwise unusable Ti:sapphire crystals. The techniques include interferometric, software, and machine modifications to precisely locate and polish sub-millimeter sites onto the optical surfaces that can not be polished into the optics conventionally. This work may allow extension of Ti:sapphire based systems to peak powers well beyond one petawatt.

Physical Description

PDF-file: 3 pages; size: 98.5 Kbytes

Source

  • Presented at: Euspen 10th Anniversary International Conference, Zurich, Switzerland, May 18 - May 22, 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-235543
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 944339
  • Archival Resource Key: ark:/67531/metadc895267

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 9, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 1, 2016, 3:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Menapace, J A; Schaffers, K I; Bayramian, A J; Davis, P J; Ebbers, C A; Wolfe, J E et al. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques, article, October 9, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc895267/: accessed August 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.