A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to remove ...
continued below
Publisher Info:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA
Place of Publication:
Livermore, California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
A core-particle model is derived to analyze transverse orbits of test particles evolving in the presence of a core ion beam described by the KV distribution. The core beam has uniform density within an elliptical cross-section and can be applied to model both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image charge nonlinearities. Transformations are employed to remove coherent utter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The core-particle model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms matched beam in a periodic quadrupole focusing channel [Lund and Chawla, Nuc. Instr. and Meth. A 561, 203 (2006)]. Further characteristics of these processes are presented here.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Lund, S M; Barnard, J J; Bukh, B; Chawla, S R & Chilton, S H.A Core-Particle Model for Periodically Focused Ion Beams with Intense Space-Charge,
article,
August 2, 2006;
Livermore, California.
(digital.library.unt.edu/ark:/67531/metadc895227/:
accessed February 15, 2019),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.