LUsim: A Framework for Simulation-Based Performance Modelingand Prediction of Parallel Sparse LU Factorization

PDF Version Also Available for Download.

Description

Sparse parallel factorization is among the most complicated and irregular algorithms to analyze and optimize. Performance depends both on system characteristics such as the floating point rate, the memory hierarchy, and the interconnect performance, as well as input matrix characteristics such as such as the number and location of nonzeros. We present LUsim, a simulation framework for modeling the performance of sparse LU factorization. Our framework uses micro-benchmarks to calibrate the parameters of machine characteristics and additional tools to facilitate real-time performance modeling. We are using LUsim to analyze an existing parallel sparse LU factorization code, and to explore a ... continued below

Creation Information

Univ. of California, San Diego April 15, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Sparse parallel factorization is among the most complicated and irregular algorithms to analyze and optimize. Performance depends both on system characteristics such as the floating point rate, the memory hierarchy, and the interconnect performance, as well as input matrix characteristics such as such as the number and location of nonzeros. We present LUsim, a simulation framework for modeling the performance of sparse LU factorization. Our framework uses micro-benchmarks to calibrate the parameters of machine characteristics and additional tools to facilitate real-time performance modeling. We are using LUsim to analyze an existing parallel sparse LU factorization code, and to explore a latency tolerant variant. We developed and validated a model of the factorization in SuperLU_DIST, then we modeled and implemented a new variant of slud, replacing a blocking collective communication phase with a non-blocking asynchronous point-to-point one. Our strategy realized a mean improvement of 11percent over a suite of test matrices.

Source

  • SC2008, Austin, TX, Nov. 15-21, 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-196E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 928005
  • Archival Resource Key: ark:/67531/metadc895219

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 15, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 8, 2016, 1:17 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Univ. of California, San Diego. LUsim: A Framework for Simulation-Based Performance Modelingand Prediction of Parallel Sparse LU Factorization, article, April 15, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc895219/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.