MULTISCALE MODELING OF POLYMER NANOCOMPOSITES

PDF Version Also Available for Download.

Description

Polymer Nanocomposites are an important class of nanomaterials with potential applications including but not limited to structural and cushion materials, electromagnetic and heat shields, conducting plastics, sensors, and catalysts for various chemical and bio processes. Success in most such applications hinges on molecular-level control of structure and assembly, and a deep understanding of how the overall morphology of various components and the interfaces between them affect the composite properties at the macroscale. The length and time-scales associated with such assemblies are prohibitively large for a full atomistic modeling. Instead we adopt a multiscale methodology in which atomic-level interactions between different ... continued below

Physical Description

PDF-file: 12 pages; size: 0.6 Mbytes

Creation Information

Maiti, A July 16, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Polymer Nanocomposites are an important class of nanomaterials with potential applications including but not limited to structural and cushion materials, electromagnetic and heat shields, conducting plastics, sensors, and catalysts for various chemical and bio processes. Success in most such applications hinges on molecular-level control of structure and assembly, and a deep understanding of how the overall morphology of various components and the interfaces between them affect the composite properties at the macroscale. The length and time-scales associated with such assemblies are prohibitively large for a full atomistic modeling. Instead we adopt a multiscale methodology in which atomic-level interactions between different components of a composite are incorporated into a coarse-grained simulation of the mesoscale morphology, which is then represented on a numerical grid and the macroscopic properties computed using a finite-elements method.

Physical Description

PDF-file: 12 pages; size: 0.6 Mbytes

Source

  • Presented at: 2007 SAMPE Fall Technical Conference, Cincinnati, OH, United States, Oct 29 - Nov 01, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-232827
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 920853
  • Archival Resource Key: ark:/67531/metadc895164

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 16, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 29, 2016, 9:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Maiti, A. MULTISCALE MODELING OF POLYMER NANOCOMPOSITES, article, July 16, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc895164/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.