Scientific Application Performance on Leading Scalar and VectorSupercomputing Platforms

PDF Version Also Available for Download.

Description

The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end computing (HEC) platforms, primarily because of their generality, scalability, and cost effectiveness. However, the growing gap between sustained and peak performance for full-scale scientific applications on conventional supercomputers has become a major concern in high performance computing, requiring significantly larger systems and application scalability than implied by peak performance in order to achieve desired performance. The latest generation of custom-built parallel vector systems have the potential to address this issue for numerical algorithms with sufficient regularity in their computational structure. In this work we explore ... continued below

Creation Information

Oliker, Leonid; Canning, Andrew; Carter, Jonathan; Shalf, John & Ethier, Stephane January 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end computing (HEC) platforms, primarily because of their generality, scalability, and cost effectiveness. However, the growing gap between sustained and peak performance for full-scale scientific applications on conventional supercomputers has become a major concern in high performance computing, requiring significantly larger systems and application scalability than implied by peak performance in order to achieve desired performance. The latest generation of custom-built parallel vector systems have the potential to address this issue for numerical algorithms with sufficient regularity in their computational structure. In this work we explore applications drawn from four areas: magnetic fusion (GTC), plasma physics (LBMHD3D), astrophysics (Cactus), and material science (PARATEC). We compare performance of the vector-based Cray X1, X1E, Earth Simulator, NEC SX-8, with performance of three leading commodity-based superscalar platforms utilizing the IBM Power3, Intel Itanium2, and AMD Opteron processors. Our work makes several significant contributions: a new data-decomposition scheme for GTC that (for the first time) enables a breakthrough of the Teraflop barrier; the introduction of a new three-dimensional Lattice Boltzmann magneto-hydrodynamic implementation used to study the onset evolution of plasma turbulence that achieves over 26Tflop/s on 4800 ES processors; the highest per processor performance (by far) achieved by the full-production version of the Cactus ADM-BSSN; and the largest PARATEC cell size atomistic simulation to date. Overall, results show that the vector architectures attain unprecedented aggregate performance across our application suite, demonstrating the tremendous potential of modern parallel vector systems.

Source

  • Journal Name: International Journal of High Performance ComputingApplications; Journal Volume: 22; Journal Issue: 1; Related Information: Journal Publication Date: 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--60800
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 925423
  • Archival Resource Key: ark:/67531/metadc895125

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 22, 2017, 3:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Oliker, Leonid; Canning, Andrew; Carter, Jonathan; Shalf, John & Ethier, Stephane. Scientific Application Performance on Leading Scalar and VectorSupercomputing Platforms, article, January 1, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc895125/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.