Numerical studies of fluid-rock interactions in EnhancedGeothermal Systems (EGS) with CO2 as working fluid

PDF Version Also Available for Download.

Description

There is growing interest in the novel concept of operating Enhanced Geothermal Systems (EGS) with CO{sub 2} instead of water as heat transmission fluid. Initial studies have suggested that CO{sub 2} will achieve larger rates of heat extraction, and can offer geologic storage of carbon as an ancillary benefit. Fluid-rock interactions in EGS operated with CO{sub 2} are expected to be vastly different in zones with an aqueous phase present, as compared to the central reservoir zone with anhydrous supercritical CO{sub 2}. Our numerical simulations of chemically reactive transport show a combination of mineral dissolution and precipitation effects in the ... continued below

Creation Information

Xu, Tianfu; Pruess, Karsten & Apps, John January 17, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

There is growing interest in the novel concept of operating Enhanced Geothermal Systems (EGS) with CO{sub 2} instead of water as heat transmission fluid. Initial studies have suggested that CO{sub 2} will achieve larger rates of heat extraction, and can offer geologic storage of carbon as an ancillary benefit. Fluid-rock interactions in EGS operated with CO{sub 2} are expected to be vastly different in zones with an aqueous phase present, as compared to the central reservoir zone with anhydrous supercritical CO{sub 2}. Our numerical simulations of chemically reactive transport show a combination of mineral dissolution and precipitation effects in the peripheral zone of the systems. These could impact reservoir growth and longevity, with important ramifications for sustaining energy recovery, for estimating CO{sub 2} loss rates, and for figuring tradeoffs between power generation and geologic storage of CO{sub 2}.

Source

  • Thirty-Third Workshop on Geothermal ReservoirEngineering, Stanford, CA, Jan 28-30

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--63790
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 925608
  • Archival Resource Key: ark:/67531/metadc895122

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 17, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 30, 2016, 12:25 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Xu, Tianfu; Pruess, Karsten & Apps, John. Numerical studies of fluid-rock interactions in EnhancedGeothermal Systems (EGS) with CO2 as working fluid, article, January 17, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc895122/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.