TMVOC-MP: a parallel numerical simulator for Three-PhaseNon-isothermal Flows of Multicomponent Hydrocarbon Mixtures inporous/fractured media

PDF Version Also Available for Download.

Description

TMVOC-MP is a massively parallel version of the TMVOC code (Pruess and Battistelli, 2002), a numerical simulator for three-phase non-isothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous/fractured media. TMVOC-MP was developed by introducing massively parallel computing techniques into TMVOC. It retains the physical process model of TMVOC, designed for applications to contamination problems that involve hydrocarbon fuels or organic solvents in saturated and unsaturated zones. TMVOC-MP can model contaminant behavior under 'natural' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source ... continued below

Creation Information

Zhang, Keni; Yamamoto, Hajime & Pruess, Karsten February 15, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

TMVOC-MP is a massively parallel version of the TMVOC code (Pruess and Battistelli, 2002), a numerical simulator for three-phase non-isothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous/fractured media. TMVOC-MP was developed by introducing massively parallel computing techniques into TMVOC. It retains the physical process model of TMVOC, designed for applications to contamination problems that involve hydrocarbon fuels or organic solvents in saturated and unsaturated zones. TMVOC-MP can model contaminant behavior under 'natural' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. With its sophisticated parallel computing techniques, TMVOC-MP can handle much larger problems than TMVOC, and can be much more computationally efficient. TMVOC-MP models multiphase fluid systems containing variable proportions of water, non-condensible gases (NCGs), and water-soluble volatile organic chemicals (VOCs). The user can specify the number and nature of NCGs and VOCs. There are no intrinsic limitations to the number of NCGs or VOCs, although the arrays for fluid components are currently dimensioned as 20, accommodating water plus 19 components that may be either NCGs or VOCs. Among them, NCG arrays are dimensioned as 10. The user may select NCGs from a data bank provided in the software. The currently available choices include O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, ethane, ethylene, acetylene, and air (a pseudo-component treated with properties averaged from N{sub 2} and O{sub 2}). Thermophysical property data of VOCs can be selected from a chemical data bank, included with TMVOC-MP, that provides parameters for 26 commonly encountered chemicals. Users also can input their own data for other fluids. The fluid components may partition (volatilize and/or dissolve) among gas, aqueous, and NAPL phases. Any combination of the three phases may present, and phases may appear and disappear in the course of a simulation. In addition, VOCs may be adsorbed by the porous medium, and may biodegrade according to a simple half-life model. Detailed discussion of physical processes, assumptions, and fluid properties used in TMVOC-MP can be found in the TMVOC user's guide (Pruess and Battistelli, 2002). TMVOC-MP was developed based on the parallel framework of the TOUGH2-MP code (Zhang et al. 2001, Wu et al. 2002). It uses the MPI (Message Passing Forum, 1994) for parallel implementation. A domain decomposition approach is adopted for the parallelization. The code partitions a simulation domain, defined by an unstructured grid, using partitioning algorithm from the METIS software package (Karypsis and Kumar, 1998). In parallel simulation, each processor is in charge of one part of the simulation domain for assembling mass and energy balance equations, solving linear equation systems, updating thermophysical properties, and performing other local computations. The local linear-equation systems are solved in parallel by multiple processors with the Aztec linear solver package (Tuminaro et al., 1999). Although each processor solves the linearized equations of subdomains independently, the entire linear equation system is solved together by all processors collaboratively via communication between neighboring processors during each iteration. Detailed discussion of the prototype of the data-exchange scheme can be found in Elmroth et al. (2001). In addition, FORTRAN 90 features are introduced to TMVOC-MP, such as dynamic memory allocation, array operation, matrix manipulation, and replacing 'common blocks' (used in the original TMVOC) with modules. All new subroutines are written in FORTRAN 90. Program units imported from the original TMVOC remain in standard FORTRAN 77. This report provides a quick starting guide for using the TMVOC-MP program. We suppose that the users have basic knowledge of using the original TMVOC code. The users can find the detailed technical description of the physical processes modeled, and the mathematical and numerical methods in the user's guide for TMVOC (Pruess and Battistelli, 2002).

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL--63827
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/925544 | External Link
  • Office of Scientific & Technical Information Report Number: 925544
  • Archival Resource Key: ark:/67531/metadc895110

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 15, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 7, 2016, 11:14 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Zhang, Keni; Yamamoto, Hajime & Pruess, Karsten. TMVOC-MP: a parallel numerical simulator for Three-PhaseNon-isothermal Flows of Multicomponent Hydrocarbon Mixtures inporous/fractured media, report, February 15, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc895110/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.