A Validation of FEM3MP with Joint Urban 2003 Data

PDF Version Also Available for Download.

Description

Under the sponsorship of the U.S. DOE and DHS, we have recently developed a computational fluid dynamics (CFD) model for simulating airflow and dispersion of chemical/biological agents released in urban areas. Our model, FEM3MP, is based on solving the three-dimensional, time-dependent Navier-Stokes equations with appropriate physics submodels on massively parallel computer platforms. It employs finite-element discretization for effective treatment of complex geometries and a semi-implicit projection scheme for efficient time-integration. A simplified CFD approach, using both explicitly resolved and virtual buildings, was implemented to further improve the model's efficiency. Predictions from our model are continuously being verified against measured data ... continued below

Physical Description

PDF-file: 48 pages; size: 2.9 Mbytes

Creation Information

Chan, S T & Leach, M J August 29, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Under the sponsorship of the U.S. DOE and DHS, we have recently developed a computational fluid dynamics (CFD) model for simulating airflow and dispersion of chemical/biological agents released in urban areas. Our model, FEM3MP, is based on solving the three-dimensional, time-dependent Navier-Stokes equations with appropriate physics submodels on massively parallel computer platforms. It employs finite-element discretization for effective treatment of complex geometries and a semi-implicit projection scheme for efficient time-integration. A simplified CFD approach, using both explicitly resolved and virtual buildings, was implemented to further improve the model's efficiency. Predictions from our model are continuously being verified against measured data from wind tunnel and field studies. Herein our model is further evaluated using observed data from IOPs (intensive operation periods) 3 and 9 of the Joint Urban 2003 field study conducted in Oklahoma City, Oklahoma, in July 2003. Our model predictions of wind and concentration fields in the near and intermediate regions, as well as profiles of wind speed, wind direction, friction velocity, and turbulent kinetic energy (TKE) in the urban wake region, are generally consistent with and compared reasonably well with field observations. In addition, our model was able to predict the observed split plume of IOP 3 and the end vortices along Park Avenue in IOP 9. The dispersion results and TKE profiles at the crane station indicate the effects of convective mixing are relatively important for the daytime release of IOP 3 but the stable effects are relatively unimportant for the nighttime release of IOP 9. Results of this study also suggest that the simplified CFD approach implemented in FEM3MP can be a cost-effective tool for simulating urban dispersion problems.

Physical Description

PDF-file: 48 pages; size: 2.9 Mbytes

Source

  • Journal Name: Journal of Applied Meteorology, vol. 46, no. 12, December 1, 2007, pp. 2127-2146; Journal Volume: 46; Journal Issue: 12

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-220878-REV-1
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 929163
  • Archival Resource Key: ark:/67531/metadc895090

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 29, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 8, 2016, 1:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chan, S T & Leach, M J. A Validation of FEM3MP with Joint Urban 2003 Data, article, August 29, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc895090/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.