The Low-Energy State ofCirculating Stored Ion Beams: Crystalline Beams

PDF Version Also Available for Download.

Description

Molecular dynamics is employed to study the low energy states of a beam of charged particles subject to circumferentially varying guiding and focusing forces and with Coulomb forces between the particles. In a constant gradient ring, the lowest energy state is never ordered, but in an alternating gradient structure, operating below the transition energy, the lowest state is ordered. The nature and characteristics of the ground state depends upon the beam density and the ring parameters. For zero temperature the crystal remains intact for a very long time, but at nonzero temperatures it gains energy from the lattice. A critical ... continued below

Physical Description

18

Creation Information

Wei, J.; Li, X.-P. & Sessler, Andrew M. March 10, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Molecular dynamics is employed to study the low energy states of a beam of charged particles subject to circumferentially varying guiding and focusing forces and with Coulomb forces between the particles. In a constant gradient ring, the lowest energy state is never ordered, but in an alternating gradient structure, operating below the transition energy, the lowest state is ordered. The nature and characteristics of the ground state depends upon the beam density and the ring parameters. For zero temperature the crystal remains intact for a very long time, but at nonzero temperatures it gains energy from the lattice. A critical temperature exists above which the crystal melts rapidly.

Physical Description

18

Subjects

Source

  • Journal Name: Physical Review Letters; Journal Volume: 73; Journal Issue: 23; Related Information: Journal Publication Date: 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-35322
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 937430
  • Archival Resource Key: ark:/67531/metadc894876

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 10, 1994

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, noon

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wei, J.; Li, X.-P. & Sessler, Andrew M. The Low-Energy State ofCirculating Stored Ion Beams: Crystalline Beams, article, March 10, 1994; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc894876/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.