Hot Billet Surface Qualifier

PDF Version Also Available for Download.

Description

OG Technologies, Inc. (OGT), developed a prototype of a Hot Billet Surface Qualifier (“Qualifier”) based on OGT’s patented HotEye™ technology and other proprietary imaging and computing technologies. The Qualifier demonstrated its ability of imaging the cast billets in line with high definition pictures, pictures capable of supporting the detection of surface anomalies on the billets. The detection will add the ability to simplify the subsequent process and to correct the surface quality issues in a much more timely and efficient manner. This is challenging due to the continuous casting environment, in which corrosive water, temperature, vibration, humidity, EMI and other ... continued below

Physical Description

10

Creation Information

Chang, Tzyy-Shuh April 30, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

OG Technologies, Inc. (OGT), developed a prototype of a Hot Billet Surface Qualifier (“Qualifier”) based on OGT’s patented HotEye™ technology and other proprietary imaging and computing technologies. The Qualifier demonstrated its ability of imaging the cast billets in line with high definition pictures, pictures capable of supporting the detection of surface anomalies on the billets. The detection will add the ability to simplify the subsequent process and to correct the surface quality issues in a much more timely and efficient manner. This is challenging due to the continuous casting environment, in which corrosive water, temperature, vibration, humidity, EMI and other unbearable factors exist. Each installation has the potential of 249,000 MMBTU in energy savings per year. This represents a cost reduction, reduced emissions, reduced water usage and reduced mill scale.

Physical Description

10

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/GO/15160-1
  • Grant Number: FG36-05GO15160
  • DOI: 10.2172/933135 | External Link
  • Office of Scientific & Technical Information Report Number: 933135
  • Archival Resource Key: ark:/67531/metadc894807

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 30, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 6:21 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chang, Tzyy-Shuh. Hot Billet Surface Qualifier, report, April 30, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc894807/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.