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Calculation of radiation damage in SLAC targets 

 

B. D. Wirth, P. Monasterio and W. Stein 

 

Abstract 

 Ti-6Al-4V alloys are being considered as a positron producing target in the Next Linear 

Collider, with an incident photon beam and operating temperatures between room temperature 

and 300°C. Calculations of displacement damage in Ti-6Al-4V alloys have been performed by 

combining high-energy particle FLUKA simulations with SPECTER calculations of the 

displacement cross section from the resulting energy-dependent neutron flux plus the 

displacements calculated from the Lindhard model from the resulting energy-dependent ion flux. 

The radiation damage calculations have investigated two cases, namely the damage produced in 

a Ti-6Al-4V SLAC positron target where the irradiation source is a photon beam with energies 

between 5 and 11 MeV. As well, the radiation damage dose in displacements per atom, dpa, has 

been calculated for a mono-energetic 196 MeV proton irradiation experiment performed at 

Brookhaven National Laboratory (BLIP experiment). The calculated damage rate is 0.8 

dpa/year for the Ti-6Al-4V SLAC photon irradiation target, and a total damage exposure of 0.06 

dpa in the BLIP irradiation experiment. In both cases, the displacements are predominately 

(~80%) produced by recoiling ions (atomic nuclei) from photo-nuclear collisions or proton-

nuclear collisions, respectively. Approximately 25% of the displacement damage results from the 

neutrons in both cases.  

 Irradiation effects studies in titanium alloys have shown substantial increases in the yield 

and ultimate strength of up to 500 MPa and a corresponding decrease in uniform ductility for 

neutron and high energy proton irradiation at temperatures between 40 and 300°C. Although the 

data is limited, there is an indication that the strength increases will saturate by doses on the 

order of a few dpa. Microstructural investigations indicate that the dominant features 

responsible for the strength increases were dense precipitation of a β (body-centered cubic) 

phase precipitate along with a high number density of dislocation loops. 
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1. Introduction 

 Radiation damage within the positron-producing targets of high-energy linear 

accelerators is anticipated to be lifetime limiting within the next generation of facilities, such as 
the Next Linear Collider, NLC [1]. In the NLC, radiation doses are expected to be significantly 

larger than in current and previous generations of linear accelerators. Targets used in the 

Stanford Linear Collider [2] (SLC) provide a source of evidence for the damage accumulated in 
Tungsten-Rhenium (W-Re) targets. A number of alternate target materials and primary beams 

have been evaluated as NLC target candidates in recent years [3-4]. This report describes the 

results of radiation damage calculations of Ti-6Al-4V positron targets with a 5-11 MeV photon 
beam, and summarizes the available literature database of irradiation effects in Ti-6Al-4V alloys. 

The report is organized as follows, Section 2 describes the approach used to calculate the 
radiation damage levels in displacements per atom (dpa) in Ti-6Al-4V as irradiated by a photon 

or high energy proton beam. Section 3 presents the results of the calculation, while Section 4 

summarizes the literature database and Section 5 summarizes the report. 

 

2. Modeling approach 

 The dpa calculations combined multiple theoretical methods and computer codes to 

calculate the displacement, as indicated in the flowsheet presented in Figure 1. The incident 

beam, either the photon energy spectrum for the positron targets or the proton beam for the BLIP 

irradiation experiments, was statistically sampled by Heinz Vincke at SLAC as input to the 

FLUKA code [5,6]. FLUKA calculated the nuclear interactions of the incident beam with the 

target and tracked the resulting nuclear reaction products. The resulting output was provided for 

the radiation damage calculations and consisted of secondary photons, neutrons, protons, 

deuterons, tritons, 3He, and alpha particles along with the recoiling nuclei from the nuclear 

reaction. The FLUKA output includes both the position and momentum of the energetic 

particles. Five separate FLUKA runs were performed for the photon target, with 20 million 

primary photons statistically sampled from the incident photon energy spectrum, with the 

sampling weighted toward the higher energy photons above the threshold energy to induce 

photo-nuclear reactions. Ten separate FLUKA runs were performed for the BLIP proton 

irradiations, with 1 million primary protons sampled in each run. The separate FLUKA runs 
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provide an assessment of the error in dpa cross-sections, with the standard error on the order of 

1% or less. 

 The neutron and ion populations (position, kinetic energy and momentum vector) output 

from the FLUKA simulations were then treated separately in the damage calculation. The 

calculation of the displacements induced by the neutrons involved collecting all of the neutrons 

into an energy dependent neutron flux for input into the SPECTER code [7] to calculate the 

displacement (dpa) cross-section. The calculation of the displacements induced by the ions was 

performed analytically by considering the partitioning of ion energy into electronic excitation 

without damage creation and nuclear collisions that produce defects. The displacement 

calculations are described in more detail below. 

 

 
Figure 1. Approach to calculating the displacement damage in dpa for Ti-6Al-4V alloys irradiated with a 
5-11 MeV photon beam or an ~190 MeV proton beam. 
 

2.1 SPECTER calculations  

 The SPECTER code calculates the number of displacements, in addition to hydrogen and 

helium gas generation, for an input neutron energy flux spectra based on a differential cross 

section library [7]. Thus, the calculation of the displacements induced by neutrons involves first 
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incorporating all neutrons generated by photon or proton induced nuclear reactions from the 

FLUKA output files into a energy-dependent flux for input into SPECTER. Based on the total 

flux (fluence) associated with this energy-dependent neutron flux spectrum, the SPECTER 

calculated dpa values are then converted back to a dpa cross-section, σdpa, for calculation of the 

total neutron-induced dpa based on the photon (proton) produced neutron flux, φ, as 

 

   

! 

dpan = "dpa#t       (1). 

 

Figure 2 shows the energy dependent neutron energy spectrum obtained from the FLUKA 

simulations of an incident 5 to 11 MeV photon beam on the Ti-6Al-4V target. As can be seen, 

vast majority of the neutrons have energies below 1 MeV, although the tail of the distribution 

extends beyond 40 MeV. Care must be taken when calculating the appropriate neutron flux, φ, to 

properly account for the sampling weight of the incident photons in the FLUKA calculation. The 

flux has been calculated by multiplying the total number of neutrons produced in a FLUKA 

calculation by the weight of the primary photon creating the neutron divided by the total weight 

of all photons simulated by FLUKA, and then multiplying this product by the anticipated photon 

flux. Thus, 

 

  

! 

" =

primary particle (neutron) weight
i=1

# neutrons

#

total weight of primary particles
* Iphoton   (2), 

 

where Iphoton is the incident photon flux anticipated on the Ti-6Al-4V target. This incident photon 

flux was based on 6.6x1021 photons per year striking the target with a spot size radius of 0.075 

cm (e.g., 3.7x1023 photons/[cm2-year]). 



UCB-NE-5015 
Page 6 of 13 

 
 

 

Figure 2. Energy-dependent neutron flux spectra produced by a 5-11 MeV photon beam incident on a Ti-

6Al-4V target.  

 

2.2 Calculation of ion damage 

 The ion damage from energetic protons, deuterons, tritons, 3He, alpha particles, etc. plus 

the resulting recoiling nuclei from a photon (proton) – nuclear interaction was calculated from 

the Lindhard model [8,9], which partitions the ions kinetic energy into electronic excitations and 

nuclear excitations. The Lindhard damage model assumes that displacement damage is produced 

only by the nuclear collisions. The number of displacements, ν, produced in a solid of mass (ms 

and charge Zs) by an ion (mass mi and charge Zi) with kinetic energy T is: 

 

   

! 

" = #(T,Zi,Zs)
T

2Ed

(3.a)

#($) =
1

1+ 0.13(3.4$
1/ 6

+ 0.4$
3 / 4

+ $)
; (3.b)

$ =
T

(2ZiZse
2
/a)

(3.c)

a =
0.88aBohr

(Zi
2 / 3

+ Zs
2 / 3
)
1/ 2

(3.d)
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where e2 is 14.4 eV/Å, aBohr is 0.529 Å and Ed is the effective displacement energy for the Ti-

6Al-4V alloy. The recommended displacement energies are 40 eV for Ti and V, and 27 eV for 

Al [7], resulting in a mass fraction averaged value of 39 eV. 

 The number of displacements, induced by each ion type (on a per incident photon basis) 

were converted to dpa and then summed. The conversion to dpa was performed by dividing the 

displacements, ν, by the cylindrical target volume containing the recoils (r ~ 0.25 cm and L = 1.5 

cm for the NLC photon target), multiplying by a weighting factor consisting of the appropriate 

ion weight divided by the total weight of the primary particles in the FLUKA simulation and 

multiplied by the atomic volume of Ti-6Al-4V (Ω=1.75x10-23 cm3/atom). Thus,  

 

  

! 

dpaions = "' (dpa per incident photon)* (# incident photons) (4.a)

"'= "(T,Zi,Zs) *
weight,ion j

total weight
j=1

all energetic ions

# *$ (4.b)

, 

 

where the number of incident photons is 6.6x1021 photons/year. It should be noted that the 

displacements produced by energetic ions is known to be much more spatially heterogeneous 

than that created by neutrons, and thus the ion dpa damage calculated using Equations 3 and 4 do 

not account for the possibility of somewhat higher peak damage values at the positions of the 

highest photon (proton) – nuclear reaction density. 

 

3. Radiation damage calculations 

3.1 SLAC target 

 Table 1 presents the calculated displacement damage resulting from energetic ions for the 

Ti-6Al-4V positron target, irradiated by a 5 to 11 MeV photon beam. The majority of the 

displacement damage is produced by the energetic alpha particles (4He), the recoiling nuclei 

following a photo-nuclear reaction, and energetic protons. For 6.6x1021 photons/year incident in 

each sample spot of the target, the displacement damage due to the energetic ions is 0.606 

dpa/year. 

 A spectral averaged dpa cross section, σdpa, of 532 barns was obtained from the 

SPECTER calculation for an incident neutron energy flux spectrum as shown in Figure 2. This 
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value equates to 2.67x10-23 dpa/incident photon – or a displacement damage rate due to photon-

nuclear produced neutrons of 0.176 dpa/year.  

 Thus the total displacement damage in the Ti-6Al-4V positron target induced by a 5 to 11 

MeV incident photon beam is approximately 0.8 dpa/year (0.782 dpa/year). Notably, the fraction 

of the displacements produced by neutrons is about one quarter (22.5%) that produced by 

energetic ions. The fraction of damage produced by neutrons versus energetic ions is the 

opposite of previous calculations performed by Maria Jose Caturla [3,4], where the majority 

(~80%) of the damage was calculated to be caused by neutrons. Further comparisons, including a 

re-analysis of previous calculations, should be performed to clarify this discrepancy. Although it 

is tempting to conclude that the differences relate to the different treatment of neutron damage 

production. It is also important to note that the current dpa calculations have not included the 

effect of in-cascade recombination of point defects as did the previous calculations by Caturla 

[3,4]. 

 

Table 1. Calculated radiation damage for energetic ions as the number of displacements and dpa/incident 

photon. 

Ion Weighted # of displacements dpa/photon 
1H 0.166 9.87x10-24 
2H 0.018 1.09x10-24 
3H 0.006 3.79x10-25 

3He 0.003 1.81x10-25 
4He 0.998 5.93x10-23 

Recoiling nuclei 0.353 2.09x10-23 

TOTAL 1.544 9.18x10-23 

 

3.2 BLIP irradiations 

 Table 2 presents the calculated displacement damage resulting from energetic ions for the 

Ti-6Al-4V specimens irradiated by ~190 MeV protons in the BLIP irradiation. The majority of 

the ion-induced displacement damage is produced by the recoiling nuclei from proton-nuclear 

reactions (including spallation), followed by the alpha particles and protons. For 3.7x1020 total 
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incident protons on the specimens, the displacement damage due to the energetic ions is 0.043 

dpa. 

 A spectral averaged dpa cross section, σdpa, of 852 barns was obtained from the 

SPECTER calculation for the proton-induced incident neutron energy flux spectrum. This value 

equates to 4.45x10-23 dpa/incident proton – or a displacement damage due to proton-nuclear 

reaction produced neutrons of 0.016 dpa. Notably, the dpa cross-section is about 60% higher for 

the proton irradiation experiment than for the photon-beam NLC positron target. This is due to a 

much larger neutron spectrum within the high-energy tail of the distribution, and is also apparent 

in the much larger cross sections for He and H gas production (3363 barns for producing an 

atomic part per million, appm, of He and 8444 barns for an appm H in the BLIP irradiations vs 

128 barns for appm He and 358 barns for appm H in the proposed photon beam NLC target). 

 Thus the total displacement damage in the Ti-6Al-4V specimens in the BLIP proton 

irradiation experiment is approximately 0.06 dpa. Again, the damage is calculated to be 

predominantly produced by energetic ions, although the fraction of neutron damage is slightly 

larger at 27.5% compared to the photon-beam target. 

 

Table 2. Calculated radiation damage for energetic ions as the number of displacements and dpa/incident 

photon. 

Ion Weighted # of displacements dpa/photon 
1H 0.023 2.81x10-25 
2H 0.0097 1.20x10-26 
3H 0.0004 4.59x10-27 

3He 0.0004 4.23x10-27 
4He 0.028 3.46x10-25 

Recoiling nuclei 9.422 1.17x10-22 

TOTAL 9.475 1.17x10-22 

 

4. Irradiation effects in Ti-6Al-4V 

 Ti-6Al-4V alloys have a duplex microstructure consisting of alpha (hexagonal close 

packed, hcp) and beta (body centered cubic, bcc) phases. Typical beta phase volume fractions 

range from about 10-20%, and the beta phase typically forms as intergranular bands [10,11]. 
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Radiation effects studies in titanium alloys have shown substantial increases in the yield and 

ultimate strength of up to 500 MPa and a corresponding decrease in uniform ductility for neutron 

and high energy proton irradiation at temperatures between 40 and 300°C [11,12]. Although the 

data is limited, there is an indication that the strength increases will saturate by doses on the 

order of a few dpa. Microstructural investigations indicate that the dominant features responsible 

for the strength increases were dense precipitation of a β (body-centered cubic) phase precipitate 

along with a high number density of dislocation loops [11,12]. 

  

Figure 3. The effect of neutron irradiation on the ultimate tensile stress of Ti-6Al-4V alloy specimens in 
the as-received (base metal) and electron-beam welded conditions. The neutron fluence of 1x1024 n/m2 
corresponds to a dose of 0.05 dpa and was performed at 150°C, while the neutron fluence of 5x1024 n/m2 
corresponds to 0.25 dpa and was performed at 270°C [12]. 
 

 Kohyama and co-workers measured the increase of the ultimate tensile strength of Ti-

6Al-4V specimens as base metal and electron-beam welded specimens and joints following 

neutron irradiation to dose levels of 0.05 and 0.25 dpa at temperatures of 150 (0.05 dpa) and 

270°C (0.25 dpa) [12]. The data are shown in Figure 3. For the base metal, the ultimate tensile 

stress increases by more than 500 MPa at a dose of 0.25 dpa. The curves in Figure 3 have been 
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drawn consistent with a saturating value of the ultimate tensile stress at higher dose, although it 

is important to note that the tendency towards saturation is difficult to judge due to the different 

irradiation temperatures. 

 Marmy and Leguey irradiated Ti-6Al-4V with a 590 MeV proton beam at a dose rate of 

~3x10-6 dpa/sec and irradiation temperatures of 40 to 350°C to doses of 0.01, 0.1, 0.2 and 0.3 

dpa [11]. Figure 4 shows the Marmy and Leguey yield and ultimate stress (Fig. 4a) and uniform 

and total ductility (Fig. 4b) as a function of irradiation temperature for Ti-6Al-4V irradiated to 

0.3 dpa. The data indicates yield stress increases of about 400 MPa at all irradiation 

temperatures, although the absolute stress values decrease with increasing test temperature. The 

uniform ductility decreases to between 2 and 3% following irradiation, as compared to 16 – 20% 

in the unirradiated specimens. Although the Marmy and Leguey paper discusses irradiations at 

doses below 0.3 dpa, it does not discuss the dose dependence (e.g., saturation). 

 

 

Figure 4. a) Yield and ultimate tensile stress of Ti-6Al-4V as a function of irradiation and test 
temperature. The irradiated specimens were proton irradiated to a dose of 0.3 dpa. b) Uniform and total 
ductility as a function of temperature for unirradiated and 0.3 dpa proton irradiated specimens. From 
reference [11]. 
 

 

 Further irradiation effects studies are recommended in the dose range from 0.1 to 10 dpa 

at irradiation temperatures from 30 to 300°C to provide additional data for model development 

and assessment of the property changes anticipated for the photon-beam NLC target. 
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5. Summary and Recommendations 

 Radiation damage produced by photon-nuclear and proton-nuclear interactions has been 

calculated for Ti-6Al-4V, which is being considered as a positron producing target for the next 

generation linear collider. The calculations involved combining FLUKA simulations of the high-

energy particle interactions with SPECTER calculations of the neutron induced displacement 

cross sections, plus theoretical calculations based on the Lindhard model to determine the 

displacements produced by energetic ions. Radiation damage in the Ti-6Al-4V alloys was 

calculated for the positron target geometry associated with irradiation by 5 to 11 MeV photons, 

in addition to the BLIP experiment, in which Ti-6Al-4V tensile specimens were irradiated with 

~190 MeV protons. The calculation results indicate a damage rate of ~0.8 dpa/year for the 

positron target (photon irradiated) and a damage level of 0.06  dpa in the BLIP irradiation 

experiment. Further, the calculations reveal that approximately 75% of the displacement damage 

results from the energetic ions, rather than the neutrons.  

 Irradiation effects studies in titanium alloys have shown substantial strengthening and 

decreases in ductility for irradiation at temperatures between 30 and 300°C. Increases in the yield 

strength of about 500 MPa and decreases in uniform ductility to about 2-3% are observed for 

irradiation doses of 0.3 dpa. Further study is needed to determine whether the radiation 

strengthening and ductility loss will saturate with increasing dose. 

 Further radiation damage calculations, in particular a direct comparison of previous 

versus current calculations are recommended to determine the different relative damage 

production of ions versus neutrons in this as compared to previous studies. An experimental test 

matrix should focus on obtaining radiation strength and ductility changes over a range of doses 

from 0.1 to 10 dpa to develop models of mechanical performance of the positron targets. This 

information, coupled with detailed modeling of the thermal-mechanical loading of the target will 

enable lifetime predictions. 
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