
Scientific Computing Kernels on the Cell Processor

Samuel Williams, John Shalf, Leonid Oliker
Shoaib Kamil, Parry Husbands, Katherine Yelick

Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, CA 94720

{swwilliams,jshalf,loliker,sakamil,pjrhusbands,kayelick}@lbl.gov

ABSTRACT
The slowing pace of commodity microprocessor performance
improvements combined with ever-increasing chip power de-
mands has become of utmost concern to computational sci-
entists. As a result, the high performance computing com-
munity is examining alternative architectures that address
the limitations of modern cache-based designs. In this work,
we examine the potential of using the recently-released STI
Cell processor as a building block for future high-end com-
puting systems. Our work contains several novel contribu-
tions. First, we introduce a performance model for Cell and
apply it to several key scientific computing kernels: dense
matrix multiply, sparse matrix vector multiply, stencil com-
putations, and 1D/2D FFTs. The difficulty of programming
Cell, which requires assembly level intrinsics for the best
performance, makes this model useful as an initial step in
algorithm design and evaluation. Next, we validate the ac-
curacy of our model by comparing results against published
hardware results, as well as our own implementations on
a 3.2GHz Cell blade. Additionally, we compare Cell per-
formance to benchmarks run on leading superscalar (AMD
Opteron), VLIW (Intel Itanium2), and vector (Cray X1E)
architectures. Our work also explores several different map-
pings of the kernels and demonstrates a simple and effective
programming model for Cell’s unique architecture. Finally,
we propose modest microarchitectural modifications that
could significantly increase the efficiency of double-precision
calculations. Overall results demonstrate the tremendous
potential of the Cell architecture for scientific computations
in terms of both raw performance and power efficiency.

1. INTRODUCTION
Over the last decade the HPC community has moved to-

wards machines composed of commodity microprocessors as
a strategy for tracking the tremendous growth in processor
performance in that market. As frequency scaling slows and
the power requirements of these mainstream processors con-
tinue to grow, the HPC community is looking for alternative

architectures that provide high performance on scientific ap-
plications, yet have a healthy market outside the scientific
community. In this work, we examine the potential of the
recently-released STI Cell processor as a building block for
future high-end computing systems, by investigating perfor-
mance across several key scientific computing kernels: dense
matrix multiply, sparse matrix vector multiply, stencil com-
putations on regular grids, as well as 1D and 2D FFTs.

Cell combines the considerable floating point resources re-
quired for demanding numerical algorithms with a power-
efficient software-controlled memory hierarchy. Despite its
radical departure from previous mainstream/commodity pro-
cessor designs, Cell is particularly compelling because it
will be produced at such high volumes that it will be cost-
competitive with commodity CPUs. The current implemen-
tation of Cell is most often noted for its extremely high per-
formance single-precision arithmetic, which is widely consid-
ered insufficient for the majority of scientific applications.
Although Cell’s peak double precision performance is still
impressive relative to its commodity peers (˜14.6 Gflop/s @
3.2GHz), we explore how modest hardware changes could
significantly improve performance for computationally in-
tensive double precision applications.

This paper presents several novel results and expands our
previous efforts [37]. We present quantitative performance
data for scientific kernels that compares Cell performance
to leading superscalar (AMD Opteron), VLIW (Intel Ita-
nium2), and vector (Cray X1E) architectures. We believe
this study examines the broadest array of scientific algo-
rithms to date on Cell. We developed both analytical mod-
els and lightweight simulators to predict kernel performance
that we demonstrated to be accurate when compared against
published Cell hardware results, as well as our own imple-
mentations on a 3.2GHz Cell blade. Our work also explores
the complexity of mapping several important scientific algo-
rithms onto the Cell’s unique architecture in order to lever-
age the large number of available functional units and the
software-controlled memory. Additionally, we propose mod-
est microarchitectural modifications that would increase the
efficiency of double-precision arithmetic calculations com-
pared with the current Cell implementation.

Overall results demonstrate the tremendous potential of
the Cell architecture for scientific computations in terms
of both raw performance and power efficiency. We exploit
Cell’s heterogeneity not in computation, but in control and
system support. Thus we conclude that Cell’s heterogeneous
multi-core implementation is inherently better suited to the
HPC environment than homogeneous commodity multicore

processors.

2. RELATED WORK
One of the key limiting factors for computational perfor-

mance is off-chip memory bandwidth. Since increasing the
off-chip bandwidth is prohibitively expensive, many archi-
tects are considering ways of using available bandwidth more
efficiently. Examples include hardware multithreading or
more efficient alternatives to conventional cache-based archi-
tectures. One such alternative is software-controlled mem-
ories, which potentially improve memory subsystem per-
formance by supporting finely controlled prefetching and
more efficient cache-utilization policies that take advantage
of application-level information — but do so with far less
architectural complexity than conventional cache architec-
tures. While placing data movement under explicit soft-
ware control increases the complexity of the programming
model, prior research has demonstrated that this approach
can be more effective for hiding memory latencies (including
cache misses and TLB misses) — requiring far smaller cache
sizes to match the performance of conventional cache imple-
mentations [20,22]. The performance of software-controlled
memory is more predictable, thereby making it popular for
real-time embedded applications where guaranteed response
rates are essential.

Over the last five years, a plethora of alternatives to con-
ventional cache-based architectures have been suggested in-
cluding scratchpad memories [10,19,35], paged on-chip mem-
ories [14, 20], and explicit three-level memory architectures
[21, 22]. Until recently, few of these architectural concepts
made it into mainstream processor designs, but the increas-
ingly stringent power/performance requirements for embed-
ded systems have resulted in a number of recent implemen-
tations that have adopted these concepts. Chips like the
Sony Emotion Engine [23,26,34] and Intel’s MXP5800 both
achieved high performance at low power by adopting three
levels (registers, local memory, external DRAM) of software-
managed memory. More recently, the STI Cell processor
has adopted a similar approach where data movement be-
tween these three address spaces is explicitly controlled by
the application. For predictable data access patterns the
local store approach is highly advantageous as it can be effi-
ciently utilized through explicit software-controlled schedul-
ing. Improved bandwidth utilization through deep pipelin-
ing of memory requests requires less power, and has a faster
access time, than a large cache due, in part, to its lower
complexity. However, if the data access pattern lacks pre-
dictability, the advantages of software-managed memory are
lost.

This more aggressive approach to memory architecture
was adopted to meet the demanding cost/performance and
real-time responsiveness requirements of Sony’s newly re-
leased video game console. However, to date, an in-depth
study to evaluate the potential of utilizing the Cell archi-
tecture in the context of scientific computations does not
appear in the literature.

3. CELL BACKGROUND
Cell [9,30] was designed by a partnership of Sony, Toshiba,

and IBM (STI) to be the heart of Sony’s recently-released
PlayStation3 gaming system. Cell takes a radical depar-
ture from conventional multiprocessor or multi-core archi-

SPE
256 KB

PPC
512 KB

memo ry
con troller

I/O

I/O

EIB
4 rings, 8bytes/ core cycle

25.6 GB/s

SPE
256 KB

SPE
256 KB

SPE
256 KB

SPE
256 KB

SPE
256 KB

SPE
256 KB

SPE
256 KB

Figure 1: Overview of the Cell processor

tectures. Instead of using identical cooperating commodity
processors, it uses a conventional high performance Pow-
erPC core that controls eight simple SIMD cores, called syn-
ergistic processing elements (SPEs), where each SPE con-
tains a synergistic processing unit (SPU), a local memory,
and a memory flow controller. An overview of Cell is pro-
vided in Figure 1.

Access to external memory is handled via a 25.6GB/s
XDR memory controller. The cache coherent PowerPC core,
the eight SPEs, the DRAM controller, and I/O controllers
are all connected via 4 data rings, collectively known as the
EIB. The ring interface within each unit allows 8 bytes/core
cycle to be read or written, and each SPE initiates and waits
for its own transfers. Simultaneous transfers on the same
ring are possible.

Each SPE includes four single precision (SP) 6-cycle pipe-
lined FMA datapaths and one double precision (DP) half-
pumped (the double precision operations within a SIMD
operation must be serialized) 9-cycle pipelined FMA dat-
apath with 4 cycles of overhead for data movement [25].
Cell has a 7 cycle in-order execution pipeline and forward-
ing network [9]. IBM appears to have solved the problem
of inserting a 13 (9+4) cycle double precision pipeline into
a 7 stage in-order machine by choosing the minimum ef-
fort/performance/power solution of simply stalling for 6 cy-
cles after issuing a double precision instruction. The SPE’s
double precision throughput [16] of one double precision in-
struction every 7 (1 issue + 6 stall) cycles coincides perfectly
with this reasoning.

Thus for computationally intense algorithms like dense
matrix multiply (GEMM), we expect single precision im-
plementations to run near peak, whereas double precision
versions would drop to approximately one fourteenth the
peak single precision flop rate [12]. Similarly, for bandwidth
intensive applications such as sparse matrix vector multi-
plication (SpMV), we expect single precision versions to be
between 1.5x and 4x as fast as double precision, depending
on density and uniformity.

Unlike a typical coprocessor, each SPE has its own local
memory from which it fetches code and reads and writes
data. All loads and stores issued from the SPE can only
access the SPE’s local memory. The Cell processor depends
on explicit DMA operations to move data from main mem-
ory to the local store of the SPE. The limited scope of loads
and stores allows one to view the SPE as having a two-level

register file. The first level is a 128 x 128b single cycle reg-
ister file, and the second is a 16K x 128b six cycle register
file; data must be moved into the first level before it can be
operated on by instructions. Dedicated DMA engines allow
multiple DMAs to run concurrently with SIMD execution,
thereby mitigating memory latency overhead via double-
buffered DMA loads and stores. The selectable length DMA
operations supported by the SPE are much like a traditional
unit stride vector load. We exploit these similarities to ex-
isting HPC platforms in order to select programming models
that are both familiar and tractable for scientific application
developers.

4. PROGRAMMING MODELS
The Cell architecture poses several challenges to program-

ming: an explicitly controlled memory hierarchy, explicit
parallelism between the 8 SPEs and the PowerPC, and a
quadword based ISA. Our goal is to select the programming
paradigm that offers the simplest possible expression of an
algorithm while being capable of fully utilizing the hardware
resources of the Cell processor.

The Cell memory hierarchy is programmed using explicit
DMA intrinsics with the option of user programmed dou-
ble buffering to overlap data movement with computation
on the SPEs. Moving from a hardware managed memory
hierarchy to one controlled explicitly by the application sig-
nificantly complicates the programming model, and pushes
it towards a one sided communication model. Unlike high-
level message-passing paradigms such as MPI [32], the DMA
intrinsics are very low level and map to half a dozen instruc-
tions. This allows for very low software overhead and po-
tentially high performance, but requires the user to either
ensure correct usage or provide a specially designed interface
or abstraction.

For programming inter-SPE parallelism on Cell, we con-
sidered three possible programming models: task parallelism
with independent tasks scheduled on each SPE; pipelined
parallelism where large data blocks are passed from one SPE
to the next; and data parallelism, where the processors per-
form identical computations on distinct data. For simplicity,
we do not consider parallelism between the PowerPC and
the SPEs, allowing us to treat Cell as a homogeneous data
parallel machine, with heterogeneity in control only. For
the investigations conducted in this paper, we adopt the
data-parallel programming model, which is a good match to
many scientific applications and offers the simplest and most
direct method of decomposing the problem. Data-parallel
programming is quite similar to loop-level parallelization af-
forded by OpenMP or the vector-like multistreaming on the
Cray X1E and the Hitachi SR-8000. Data pipelining may
be suitable for certain classes of algorithms and will be the
focus of future investigation.

The focus of this paper is Cell architecture and perfor-
mance; we do not explore the efficiency of the IBM SPE
XLC compiler. Thus, we rely heavily on SIMD intrinsics
and do not investigate if appropriate SIMD instructions are
generated by the compiler. Although the produced Cell code
may appear verbose — due to the use of intrinsics instead
of C operators — it delivers readily understandable perfor-
mance.

To gain a perspective of programming complexity, we briefly
describe our Cell programming learning curve. Our first Cell
implementation, SpMV, required about a month for learn-

ing the programming model, the architecture, the compiler,
the tools, and deciding on a final algorithmic strategy. The
final implementation required about 600 lines of code. The
next code development examined two flavors of double pre-
cision stencil-based algorithms. These implementations re-
quired one week of work and are each about 250 lines, with
an additional 200 lines of common code. The programming
overhead of these kernels on Cell required significantly more
effort than the scalar version’s 15 lines, due mainly to loop
unrolling and intrinsics use. Although the stencils are a sim-
pler kernel, the SpMV learning experience accelerated the
coding process.

Having become experienced Cell programmers, the single
precision time skewed stencil — although virtually a com-
plete rewrite from the double precision single step version
— required only a single day to code, debug, benchmark,
and attain spectacular results of over 65 Gflop/s. This im-
plementation consists of about 450 lines, due once again to
unrolling and the heavy use of intrinsics.

5. SIMULATION METHODOLOGY
The simplicity of the SPEs and the deterministic behav-

ior of the explicitly controlled memory hierarchy make Cell
amenable to performance prediction using a simple analytic
model. Using this approach, one can explore multiple vari-
ations of an algorithm without the effort of programming
each variation and running on either a fully cycle-accurate
simulator or hardware. With the cycle accurate full sys-
tem simulator (Mambo), we have successfully validated our
performance model for SGEMM, SpMV, and Stencil Com-
putations, as will be shown in subsequent sections.

5.1 Cell Performance Modeling
Our modeling approach is broken into two steps commen-

surate with the two phase double buffered computational
model. The kernels are first segmented into code-snippets
that operate only on data present in the local store of the
SPE. We sketched the code snippets in SPE assembly (with-
out register allocation) and performed static timing analysis.
The latency of each operation, issue width limitations, and
the operand alignment requirements of the SIMD/quadword
SPE execution pipeline determined the number of cycles re-
quired. The in-order nature and fixed local store memory
latency of the SPEs makes this analysis deterministic and
thus more tractable than on cache-based, out-of-order mi-
croprocessors.

In the second step, we construct a model that tabulates
the time required for DMA loads and stores of the operands
required by the code snippets. The model accurately reflects
the constraints imposed by resource conflicts in the memory
subsystem. For instance, concurrent DMAs issued by multi-
ple SPEs must be serialized, as there is only a single DRAM
controller. The model also presumes a conservative fixed
DMA initiation latency (software and hardware) of 1000 cy-
cles.

Our model then computes the total time by adding all
the per-iteration (outer loop) times, which are themselves
computed by taking the maximum of the snippet and DMA
transfer times. In some cases, the per-iteration times are
constant across iterations, but in others it varies between
iterations and is input-dependent. For example, in a sparse
matrix computation, the memory access pattern depends
on the matrix nonzero structure, which varies across iter-

Cell X1E AMD64 IA64
SPE Chip (MSP)

SIMD Multi- Multi Super VLIW
Architecture core chip scalar

SIMD Vector
Clock (GHz) 3.2 3.2 1.13 2.2 1.4
DRAM (GB/s) 25.6 25.6 34 6.4 6.4
SP Gflop/s 25.6 204.8 36 8.8 5.6
DP Gflop/s 1.83 14.63 18 4.4 5.6
Local Store 256KB 2MB — — —
L2 Cache — 512KB 2MB 1MB 256KB
L3 Cache — — — — 3MB
Power (W) 5 ˜100 120 89 130
Year — 2006 2005 2004 2003

Table 1: Architectural overview of STI Cell, Cray
X1E MSP, AMD Opteron, and Intel Itanium2. Es-
timated total Cell chip power and is derived from
IBM Cell blade power. Total Gflop/s does not in-
clude the PowerPC core.

ations. Some algorithms may also require separate stages
which have different execution times; e.g., the FFT has
stages for loading data, loading constants, local computa-
tion, transpose, local computation, bit reversal, and storing
the results.

5.2 Hardware Comparison
For simplicity and consistency we chose to model a 3.2GHz,

8 SPE version of Cell with 25.6GB/s of memory bandwidth.
This version of Cell is likely to be used in the first release
of the Sony PlayStation3 [33] with perhaps more enabled
SPEs. The lower frequency had the simplifying benefit that
both the EIB and DRAM controller could deliver two single
precision words per cycle. The maximum flop rate of such
a machine would be 204.8 Gflop/s, with a computational
intensity of 32 flops/word. For comparison, we ran these
kernels on actual hardware of several leading processor de-
signs: the vector Cray X1E MSP, superscalar AMD Opteron
248 and VLIW Intel Itanium2. Both the sparse matrix ker-
nel and the stencil kernels were implemented and run on an
IBM 3.2GHz Cell blade using 8 SPEs. The key architectural
characteristics of these machines are detailed in Table 1.

5.3 Cell+ Architectural Exploration
The double precision pipeline in Cell is obviously an af-

terthought as video games have limited need for double pre-
cision arithmetic. Certainly a redesigned pipeline would rec-
tify the performance limitations, but would do so at a cost of
additional design complexity and power consumption. We
offer a more modest alternative that can reuse most of the
existing circuitry. Based on our experience designing the VI-
RAM vector processor-in-memory chip [14], we believe these
design modifications are considerably less complex than a
redesigned pipeline and consume very little additional sur-
face area on the chip, but show significant double precision
performance improvements for scientific kernels.

In order to explore the limitations of Cell’s double preci-
sion issue bandwidth, we propose an alternate design with
a longer forwarding network to eliminate all but one of the
stall cycles — recall the factors that limit double precision

0

1

2

3

6

7

8

9

12

13

14

15

18

19

20

21

24

25

26

27

30

31

32

33

4

5

10

11

16

17

22

23

28

29

34

35

0

1

2

3 6

7

8

9 12

13

14

15

18

19

20

21 24

25

26

27 30

31

32

33

4

5

10

11

16

17

22

23

28

29

34

35

Figure 2: Column major layout versus Block Data
Layout. In both cases a 9x9 matrix with 3x3 cache
blocks is represented. The numbers are representa-
tive of addresses in memory. On the left, the column
major layout will necessitate three separate stanzas
to be loaded for each cache block - as the columns
within a cache block are not contiguous. On the
right, the block data layout approach ensures that
each cache block is contiguous and thus requires a
single long DMA transfer.

throughput as described in Section 3. In this hypothetical
implementation, called Cell+, each SPE would still have the
single half-pumped double precision datapath, but would be
able to dispatch one double precision SIMD instruction ev-
ery other cycle instead of one every 7 cycles. The Cell+
design would not stall issuing other instructions and would
achieve 3.5x the double precision throughput of Cell (51.2
Gflop/s) by fully utilizing the existing double precision dat-
apath; however, it would maintain the same single precision
throughput, frequency, bandwidth, and power as Cell.

6. DENSE MATRIX-MATRIX MULTIPLY
We begin by examining the performance of dense matrix-

matrix multiplication, or GEMM. This kernel is character-
ized by high computational intensity and regular memory
access patterns, making it extremely well suited for the Cell
architecture.

6.1 Data Layout
We explore two storage formats: column major and block

data layout [29] (BDL). In a column major layout, the data
within each column is stored contiguously. BDL is a two-
stage addressing scheme where the matrix first undergoes a
2D partitioning into blocked rows and blocked columns, the
intersection of which will be referred to as a cache block.
In the second stage (i.e. within a cache block), the data is
stored in a column major format. Figure 2 illustrates the
differences in these storage formats.

6.2 Algorithm Considerations
For GEMM, we adopt what is in essence an outer loop

parallelization approach. Each matrix is broken into 8n x
n element tiles designed to fit into the memory available on
the Cell chip, which are in turn split into eight n x n element
tiles that can fit into the 8 SPE local stores. For the column
layout, the matrix will be accessed via a number of short
DMAs equal to the dimension of the tile — e.g. 64 DMAs
of length 64. The BDL approach, on the other hand, will
require a single long DMA of length 16KB in single precision.

Since the local store is only 256KB, and must contain
both the program and stack, program data in the local
store is limited to about 56K words. The tiles, when dou-
ble buffered, require 6n2 words of local store (one from each
matrix) — thus making 962 the maximum square tile size
in single precision. Additionally, in column layout, there is
added pressure on the maximum tile size for large matri-
ces, as each column within a tile will be on a different page
resulting in TLB misses. The minimum size of a tile is de-
termined by the Flops-to-word ratio of the processor. In the
middle, there is a tile-size “sweet spot” that delivers peak
performance.

The loop order is therefore chosen to minimize the aver-
age number of pages touched per phase for a column major
storage format. The BDL approach, where TLB misses are
of little concern, allows us to structure the loop order to
minimize memory bandwidth requirements. Whenever pos-
sible, we attempt to broadcast the block to all SPEs which
may need it.

A possible alternate approach is to adapt Cannon’s algo-
rithm [3] for parallel machines. Although this strategy could
reduce the DRAM bandwidth requirements by transferring
blocks via the EIB, for a column major layout, it could sig-
nificantly increase the number of pages touched. This will
be the subject of future work. Note that for small matrix
sizes, it is most likely advantageous to choose an algorithm
that minimizes the number of DMAs. One such solution
would be to broadcast a copy of the first matrix to all SPEs.

6.3 GEMM Results
SGEMM simulation data show that 322 blocks do not

achieve sufficient computational intensity to fully utilize the
processor. The choice of loop order and the resulting in-
crease in memory traffic prevents column major 642 blocks
from achieving a large fraction of peak (over 90%) for large
matrices. Only 962 block sizes provide enough computa-
tional intensity to overcome the additional block loads and
stores, and thus achieve near-peak performance — over 200
Gflop/s. For BDL, however, 642 blocks effectively achieve
peak performance. Whereas we assume a 1000 cycle DMA
startup latency in our simulations, if the DMA latency were
only 100 cycles, then the 642 column major performance
would reach parity with BDL.

The peak Cell performance of GEMM based on our per-
formance model (referred to as Cellpm) for large matrices
is presented in Table 2. For BDL with large cache blocks
Cell is capable of reaching over 200 Gflop/s in single preci-
sion. In double precision, although the time to load a 642

block is twice that of the single precision version, the time
required to compute on a 642 double precision block is about
14x as long as the single precision counterpart (due to the
limitations of the double precision issue logic). This signif-
icantly reduces memory performance pressure on achieving
peak performance. Nevertheless, when using our proposed
Cell+ hardware variant, DGEMM performance jumps to an
impressive 51 Gflop/s.

Cellpmachieves 200 Gflop/s for perhaps 100W of power —
nearly 2 Gflop/s/Watt. Clearly, for well-suited applications,
Cell is extremely power efficient. However, actual power
usage may be substantially lower. At 3.2GHz, each SPE
may require 5W [9]. Thus with a nearly idle PPC and L2,
Cell may actually achieve 4 Gflop/s/Watt.

Cellpm
+ Cellpm X1E AMD64 IA64

DP (Gflop/s) 51.1 14.6 16.9 4.0 5.4
SP (Gflop/s) — 204.7 29.5 7.8 3.0

Table 2: GEMM performance (in Gflop/s) for large
square matrices on Cell, X1E, Opteron, and Ita-
nium2. Only the best performing numbers are
shown. Cell data based on our performance model
is referred to as Cellpm.

6.4 Performance Comparison
Table 2 shows a performance comparison of GEMM be-

tween Cellpmand the set of modern processors evaluated in
our study. Note the impressive performance characteristics
of the Cell processors, achieving 69x, 26x, and 7x speed
up for SGEMM compared with the Itanium2, Opteron, and
X1E respectively. For DGEMM, the default Cell processor
is 2.7x and 3.7x faster than the Itanium2 and Opteron.

In terms of power, Cell performance is even more impres-
sive, achieving at least 85x the power efficiency of the Ita-
nium2 for SGEMM!

Our Cellpm
+ exploration architecture is capable, for large

tiles, of fully exploiting the double precision pipeline and
achieving over 50 Gflop/s. In double precision, the Cell+ ar-
chitecture would be nearly 10 times faster than the Itanium2
and more than 12 times more power efficient. Additionally,
traditional micros (Itanium2, Opteron, etc) in multi-core
configurations would require either enormous power saving
innovations or dramatic reductions in performance, and thus
would show even poorer performance/power compared with
the Cell technology. Compared to the X1E, Cell+ would be
3 times as fast and 3.5 times more power efficient.

The decoupling of main memory data access from the
computational kernel guarantees constant memory access
latency since there will be no cache misses, and all TLB ac-
cesses are resolved in the communication phase. Matrix mul-
tiplication is perhaps the best benchmark to demonstrate
Cell’s computational capabilities, as it achieves high perfor-
mance by buffering large blocks on chip before computing
on them.

6.5 Model Validation
IBM has released their in-house performance evaluation

of their prototype hardware [4]. On SGEMM, they achieve
about 201 Gflop/s, which is within 2% of our predicated
performance.

7. SPARSE MATRIX VECTOR MULTIPLY
Sparse matrix-vector multiplication is an important com-

putational kernel used in scientific computing, signal and
image processor, and many other important applications.
In general, the problem is to compute y = αA× x + βy, for
sparse matrix A, dense vectors x and y, and scalars α and β.
We restrict the kernel to α = 1.0, and β = 0.0. Sparse ma-
trix algorithms tend to run much less efficiently than their
dense matrix counterparts due to irregular memory access
and low computational intensity.

At first glance, SpMV would seem to be a poor applica-
tion choice for Cell since the SPEs have neither caches nor
efficient word-granularity gather/scatter support. However,
these considerations are perhaps less important than Cell’s

low functional unit and local store latency (<2ns), the task
parallelism afforded by the SPEs, the eight independent load
store units, and the ability to stream nonzeros via DMAs.

7.1 Storage Formats
Since the sparse matrix is stored in compressed format,

a myriad of storage formats have arisen each with specific
advantages [31]. The three used in this paper are shown in
Figure 3.

The most common format, compressed sparse row (CSR),
organizes the matrix into sparse rows as shown in Figure 3
(top). Each sparse row is encoded in two arrays - one to
store the nonzero values, and the other to store the corre-
sponding nonzero column indices. The two arrays are stored
contiguously with the arrays from the other sparse rows. As
such, it is possible to provide a single row start pointer for
each sparse row; the row end is just the row start of the next
sparse row.

The typical implementation of sparse matrix-vector mul-
tiplication using CSR uses two nested loops: one for each of
the rows, and one for the nonzeros within the current row.
This clearly can be efficient when the average row length
is large, but performs poorly, due to loop overhead, when
rows are short. A variant on this standard implementation
is segmented scan [1] in which the loop is unrolled via a
conditional statement. Most compilers do not code the con-
ditional statement efficiently and thus the method is rarely
used. The data structure for segmented scan remains the
standard CSR; only the code structure is modified. The
X1E suite includes this approach as an option for sparse
matrix multiplication.

One option to enable SIMDization is to require that all
rows be a multiple of the register size. This is illustrated
in Figure 3 (middle). Thus for double precision with 128b
SIMD registers, all row lengths must be even: they are mul-
tiples of four in single precision. One then exploits intra-
row parallelism. More succinctly, both even and odd partial
sums are created. At the end of a row, they are transposed,
and reduced with those on the next row. The single resulting
quadword is stored.

The alternate option for enabling SIMDization is to ex-
ploit the local structure of the matrix, and register block it.
The resultant blocked compressed sparse row (BCSR) for-
mat, as shown in Figure 3 (bottom), has the disadvantage
of increasing memory bandwidth since zeros are explicitly
stored. However it has the advantages of increasing local
inner loop parallelism, amortizing loop overhead, and facil-
itating SIMDization.

Finally, one should note that instead of processing nonze-
ros one row at a time, it is possible to parallelize across
multiple rows. Permuted CSR (CSRP) sorts the rows by
length at runtime. Although this will force irregular ac-
cess to the destination vector as well as the nonzeros, it has
the advantage that it is far easier to vectorize the computa-
tion. An alternate approach changes the data structure to
remove the indirection to the nonzeros and thus stores the
ith nonzero of each row contiguously. This storage format,
known as jagged diagonal, is popular and efficient on vector
machines such as the X1E.

7.2 Exploiting Locality
For Cell, only CSR will be examined as BCSR is an on-

going research area. As discussed above, because of the

2 1 2 1 3 0

Columns[]

RowStarts[] 0 1 3 5 6

1 2 0 1 3

Columns[]

RowStarts[] 0 2 5

2 3 1 2 1 3

Columns[]

RowStarts[] 0 2 4 6 8

0

0.0

0.0

0.0

0.0

0.0 0.0

BCSR

CSR (Padded)

CSR

1

Figure 3: Comparison of nonzero sparse storage for-
mats for a 4x4 matrix. Note: nonzeros are solid, and
explicitly zeros are hashed. The value arrays are not
shown. Top: compressed sparse row (CSR). Middle:
padded compressed sparse row. Each row length
may be unique, but must be even. Two explicit
zeros are required. Bottom: 2x1 block compressed
sparse row (BCSR). The BCSR version requires four
explicit zeros to be stored.

quadword nature of the SPEs, all rows within a CSR tile
are padded to 128b granularities. This greatly simplifies
the programming model at the expense of no more than N
explicit zeros.

To perform a stanza gather operation Cell utilizes the
MFC “get list” command, where a list of addresses/lengths
is created in local store. The MFC gathers these stanzas
from the global store and packs them into the local store. It
is possible to make every stanza a single float or double; how-
ever, the underlying DRAM architecture operates on 1024b
(128byte) granularities. Therefore, although the program
specifies that only a doubleword needs to be loaded, the
underlying hardware will load the full 128 byte line. Thus
with a naive implementation, each nonzero would require
the transfer of perhaps 140 bytes to perform only two flops.
Even if peak memory bandwidth was attainable, this lack
of spatial and temporal locality would limit performance to
a mere 0.35 Gflops.

In order to exploit spatial locality a matrix cache blocking
algorithm was implemented, where the matrix is partitioned

Row Pointers

Source Vector

V[i]

X[C[i]]

NZ Values

NZ Column Indices D
estination Vector

flow
control

load from DRAM

load from DRAM

store to D
R

A
M

S
tream

from
 D

R
A

M

1

1

3
2

Figure 4: Streaming and caching for SpMV. There
are up to three phases for each cache block: 1. load
and cache source vector and row pointer, 2. stream
nonzeros and update destination vector, 3. if the
last cache block in a row, store the destination vec-
tor to DRAM.

in 2D such that part of the source vector and part of the
destination vector could fit simultaneously in local store.
For sufficiently structured matrices there is enough temporal
and spatial locality to make this a viable option. In effect,
instead of one matrix stored in CSR format, less than a
dozen thinner matrices are each stored in CSR format. Note
that if each cache block has fewer than 64K columns, then
it is possible to store a relative column index as a halfword
and save 2 bytes of memory traffic per nonzero.

7.3 Streaming
As the nonzeros are stored contiguously in arrays, it is

straightforward to stream them into memory via DMA op-
erations. Here, unlike the source and destination vectors, it
is essential to double buffer in order to maximize the SPE’s
computational throughput. Using buffers of about 8KB
aligned to DRAM lines results in high bandwidth utiliza-
tion and sufficiently amortizes the omnipresent 1000 cycle
DMA latency overhead, but results in rather large prologue
and epilogue when pipelining. This is shown in Figure 4.

We chose to implement a standard CSR loop structure
with the caveat that it has been software pipelined as much
as possible. This presents complications as only a few nonze-
ros are in the buffer, and thus the kernel must be organized
around looping through the buffer as opposed to looping
through the sparse row. As Cell’s SIMD implementation
is not scalar friendly, BCSR and blocked segmented scan
are areas for further research, although the latter is difficult
without a predicated store instruction.

7.4 Parallelization
When parallelizing the work among the SPEs, we explored

three variations (shown in Figure 5): parallelization of a

SPU0
SPU1
SPU2
SPU3
SPU4
SPU5
SPU0
SPU1
SPU2
SPU3
SPU4
SPU5

SPU0
SPU1
SPU2
SPU3
SPU4
SPU5

 SPU0 SPU1
SPU2
SPU3

SPU4

SPU5

SPU0
SPU1

SPU2

SPU3

SPU4

SPU5

SPU0
SPU1
SPU2
SPU3
SPU4
SPU5
SPU0
SPU1
SPU2
SPU3
SPU4
SPU5

SPU0

SPU1

SPU2

SPU4 SPU3
SPU5

 SPU0
SPU1

SPU2
SPU3
SPU4

SPU5

SPU0
SPU1

SPU2

SPU3

SPU4

SPU5

PartitionedY PrivateY Conventional

Figure 5: Parallelization strategies for SpMV on a
N x N matrix. Note - the source vector cache block
size is half the source vector size (N/2). Left: Parti-
tionedY - the destination vector for each cache block
is uniformly partitioned, but the computation is not.
SPUs are lock step at cache block granularity. It
uses an explicit 2D cache blocking strategy. Mid-
dle: PrivateY - each cache block is uniquely par-
allelized and balanced. However, each SPU must
maintain a copy of the destination vector, which is
reduced at the end of the row. SPUs are lock step
at cache block granularity. It also uses an explicit
2D cache blocking strategy. Right: Conventional
cache blocked strategy - parallelization is carried
across cache block boundaries and the SPUs must
only synchronize at the end of the matrix. It uses a
1D blocking, but load balancing is far more difficult
as it must be estimated for the entire matrix, not
just a cache block.

single blocked row, parallelization of a single cache block,
and parallelization of the entire matrix via standard row
blocking. If synchronization is performed on a per cache
block basis, then it is possible to use a broadcast mecha-
nism to leverage the vast on-chip bandwidth it disseminate
the source vector to all SPEs. Within this subclass, one
approach, referred to as PartitionedY, partitions the desti-
nation vector evenly among the SPEs. With this approach,
there is no guarantee that the SPEs’ computations will re-
main balanced. Thus, the execution time of the entire tile
can be limited by the most heavily loaded SPE. An alternate
method, referred to as PrivateY, divides work among SPEs
within a cache block by distributing the nonzeros as evenly
as possible. This strategy necessitates that each SPE con-
tains a private copy of the destination vector, and requires
an inter-SPE reduction at the end of each blocked row. Thus
for uniform cache blocks, the PartitionedY approach is gen-
erally advantageous; however, for matrices exhibiting irreg-
ular (uneven) nonzero patterns, we expect higher perfor-
mance using PrivateY. The third method, is the more stan-
dard approach, with synchronization only at the end of the
matrix. No broadcast is possible, but load balancing is more
conventional. Only the third approach was actually imple-
mented.

Note that there is a potential performance benefit by writ-
ing a kernel specifically optimized for symmetric matrices.
However, this algorithm is substantially more complicated
than the unsymmetric variant for the parallel case, and will
be the subject of future work.

In order to effectively evaluate SpMV performance, we ex-
amine ten real matrices used in numerical calculations from

6

9

15

17

18

25

27

28

36

40

Vavasis

FEM

Memory

CFD

FEM Crystal

3D Tube

Portfolio

NASA

Vibroacoustic

Linear
Programming

40K 1.6M 2D PDE Problem

22K 1M Fluid Mechanics
Problem

17K 125K Motorola Memory
Circuit

75K 325K Navier-Stokes,
viscous fllow

14K 490K FEM Stiffness
matrix

45K 1.6M 3D Pressure Tube

74K 335K Financial Portfolio

36K 180K PWT NASA Matrix

12K 177K Flexible Box
Structure

31K 1M AAT

Name N NNZ Descriptionspyplot

Figure 6: Suite of matrices used to evaluate SpMV
performance. Matrix numbers as defined in the
SPARSITY suite are shown in the first column. The
second column is a spyplot representing the density
of nonzeros - clearly some matrices are very irregu-
lar, and some average very few nonzeros per row.

the BeBop SPARSITY suite [13,36] (four nonsymmetric and
six symmetric). Figure 6 presents an overview of the evalu-
ated matrices.

7.5 SpMV Results
Before we examine results, remember that Cell is doubly

disadvantaged on this kernel: not only is double precision
performance far less than single precision, but no autotun-
ing has been implemented, and the current implementation
is rather immature. Table 3 details SpMV performance for
the various machines, precision and matrices. Note that a
double precision nonsymmetric kernel was written and run
on a 3.2 GHz Cell system to obtain performance numbers for
both the symmetric and nonsymmetric matrices. The per-
formance models show best performance after varying cache
block size and parallelization strategy. Given Cell’s inher-

ent architectural limitations in the context of SpMV, it is
surprising that it achieves nearly 4 Gflop/s (on average) in
single precision and nearly 3 Gflop/s (on average) in dou-
ble precision, indicating that the algorithm achieves a high
fraction of memory bandwidth.

Unlike the synthetic matrices, the real matrices, which
contain dense sub-blocks, can exploit BCSR without unnec-
essarily wasting memory bandwidth on zeros. As memory
traffic is key, storing BCSR blocks in a compressed format
(the zeros are neither stored nor loaded) would allow for sig-
nificantly higher performance if there is sufficient support
within the ISA to either decompress these blocks on the fly,
or compute on compressed blocks. This will be explored in
future work.

As evidenced by the data, matrices that average few nonze-
ros per row (e.g. memory, CFD, portfolio, and NASA) per-
form poorly as the loop overhead, including mispredicted
branches, can be very expensive. On the contrary, matrices
with denser cache blocks perform well on Cell. We expect
the segmented scan and BCSR approaches (currently under
development) to improve performance in these instances.

As can clearly be seen when comparing Cell and Cellpm

performance in Table 3, the actual implementation which at-
tempts to statically balance the matrix at runtime and does
not rely on broadcasting, compares quite favorably with our
performance model, which is perfectly balanced and exploits
a broadcast operation. Once again DMA latency plays a
relatively small role in this algorithm. In fact, reducing the
DMA latency by a factor of ten causes only a 5% increase in
performance. This is actually an encouraging result which
indicates that the memory bandwidth is highly utilized and
the majority of bus cycles are used for transferring data
rather than stalls.

On the whole, clock frequency also plays a small part in
the overall single precision performance. Solely increasing
the clock frequency by a factor of 2 (to 6.4GHz) provides
only a 6% increase in performance on the SPARSITY non-
symmetric matrix suite. Similarly, cutting the frequency in
half (to 1.6GHz) results in only a 30% decrease in perfor-
mance. Simply put, for the common case, more time is used
in transferring the data than performing the computation.

Results from our performance estimator show that sin-
gle precision SPMV is only 50% faster than double preci-
sion, even though the peak single precision performance is
fourteen times that of double precision. However the fact
that double precision nonzero memory traffic is about 50%
larger indicates that much of the kernel time is determined
by memory bandwidth rather than computation. This pro-
vides some hope that a symmetric kernel, although difficult
to implement, will show significant benefits in single preci-
sion by cutting the memory traffic in half.

As seen in Table 3, the double precision Cellpm
+ perfor-

mance is only slightly faster than Cellpm on the SpMV ker-
nel, indicating that most cycles are not the double precision
stall cycles, but rather other instructions as well as memory
bandwidth cycles.

7.6 Performance Comparison
Table 3 compares Cell’s performance for SpMV with re-

sults from the Itanium2 and Opteron using SPARSITY, a
highly tuned sparse matrix numerical library, on nonsym-
metric (top) and symmetric matrix suites. X1E results were
gathered using a high-performance X1-specific SpMV imple-

SPARSITY nonsymmetric matrix suite
Double Precision (Gflop/s) Single Precision (Gflop/s)

Matrix Cell Cellpm
+ Cellpm X1E AMD64 IA64 Cellpm AMD64 IA64

Vavasis 3.35 3.20 3.12 0.84 0.44 0.46 4.93 0.70 0.49
FEM 3.92 3.49 3.43 1.55 0.42 0.49 5.00 0.59 0.62
Mem 1.77 1.68 1.45 0.57 0.30 0.27 2.43 0.45 0.31
CFD 1.61 1.72 1.53 1.61 0.28 0.21 1.99 0.38 0.23

Average 2.66 2.52 2.38 1.14 0.36 0.36 3.59 0.53 0.41

SPARSITY symmetric matrix suite
Double Precision (Gflop/s) Single Precision (Gflop/s)

Matrix Cell Cellpm
+ Cellpm X1E AMD64 IA64 Cellpm AMD64 IA64

FEM 4.23 3.66 3.62 — 0.93 1.14 5.39 1.46 1.37
3D Tube 3.26 3.63 3.59 — 0.86 1.16 5.30 1.36 1.31
Portfolio 1.46 1.78 1.55 — 0.37 0.24 2.35 0.42 0.32
NASA 1.61 1.86 1.60 — 0.42 0.32 2.56 0.46 0.40
Vibro 3.42 3.19 3.01 — 0.57 0.56 4.87 0.56 0.64
LP 3.48 3.48 3.43 — 0.47 0.63 5.20 0.55 0.92

Average 2.91 2.93 2.80 — 0.60 0.67 4.28 0.80 0.83

Table 3: SpMV performance in single and double precision on the SPARSITY (top) nonsymmetric and
(bottom) symmetric matrix suites. Note: on Cell, the symmetric matrices were only run on a nonsymmetric
kernel

mentation [7].
Considering that the Itanium2 and Opteron each have a

6.4GB/s bus compared to Cell’s 25.6GB/s DRAM band-
width — one may expect that a memory bound application
such as SpMV would perform only four times better on the
Cell. Nonetheless, on average, Cell is 7x faster in double
precision for the nonsymmetric matrices. This is because in
order to achieve maximum performance, the Itanium2 must
rely on the BCSR storage format, and thus waste memory
bandwidth loading unnecessary zeros. However, the Cell’s
high flop-to-byte ratio ensures that the regularity of BCSR
is unnecessary, avoiding loads of superfluous zeros. For ex-
ample, in matrix #17, Cell uses more than 50% of its band-
width loading just the double precision nonzero values, while
the Itanium2 utilizes only 33% of its bandwidth. The rest
of Itanium2’s bandwidth is used for zeros and metadata. In
this sample of symmetric matrices, OSKI was able to ex-
ploit BCSR to achieve good performance on the superscalar
machines, and Cell is only four times faster. Of course this
optimization could be applied to Cell to achieve even better
performance. It should be noted that while runs on Cell
involve a cold start to the local store, the Itanium2’s have
the additional advantage of a warm cache.

Cell’s use of on-chip memory as a buffer is advantageous
in both power and area compared with a traditional cache.
In fact, Cell is nearly 10 times more power efficient than
the Itanium2 and more than 6 times more efficient than
the Opteron for SpMV. For a memory bound application
such as this, multicore commodity processors will see lit-
tle performance improvement unless they also scale memory
bandwidth.

Comparing results with an X1E MSP is far more difficult.
For unsymmetric matrices, Cell performance on average is
more than twice that of the best X1E kernel. The fact that
the X1E consumes about 30% more power than Cell guar-
antees that Cell, in double precision, is three times as power
efficient as the X1E.

7.7 Model Validation
As seen in Table 3, we evaluated our implementation of

the double precision SpMV kernel on actual Cell hardware.
The implementation makes blocking and partitioning deci-
sions at run time, based on the lessons learned while explor-
ing optimization strategies for the performance model. Al-
though SpMV performance is ostensibly difficult to predict,
our results clearly show hardware performance very close to
the Cellpm estimator. This builds confidence in our belief
that Cell performance is far easier to predict than traditional
superscalar architectures.

8. STENCIL COMPUTATIONS
Stencil-based computations on regular grids are at the

core of a wide range of important scientific applications. In
these applications, each point in a multidimensional grid is
updated with contributions from a subset of its neighbors.
The numerical operations are then used to build solvers that
range from simple Jacobi iterations to complex multigrid
and block structured adaptive methods.

In this work we examine two flavors of stencil computa-
tions derived from the numerical kernels of the Chombo [5]
and Cactus [2] toolkits. Chombo is a framework for comput-
ing solutions of partial differential equations (PDEs) using
finite difference methods on adaptively refined meshes. Here
we examine a stencil computation based on Chombo’s demo
application, heattut, which solves a simple heat equation
without adaptivity. Cactus is modular open source frame-
work for computational science, successfully used in many
areas of astrophysics. Our work examines the stencil kernel
of the Cactus demo, WaveToy, which solves a 3D hyper-
bolic PDE by finite differencing. The heattut and WaveToy
equations are shown in Figure 7.

Notice that both kernels solve 7 point stencils in 3D for
each point. However, the heattut equation only utilizes val-
ues from the previous time step, while WaveToy requires
values from two previous timesteps. Additionally, WaveToy

Xnext[i, j, k, t+ 1] = X[i− 1, j, k, t]+ X[i+ 1, j, k, t]+

X[i, j− 1, k, t]+ X[i, j+ 1, k, t]+

X[i, j, k− 1, t]+ X[i, j, k+ 1, t]+

αX[i, j, k, t]

Xnext[i, j, k, t+ 1] =
dt2

dx2
(X[i− 1, j, k, t]+ X[i+ 1, j, k, t])+

dt2

dy2
(X[i, j− 1, k, t]+ X[i, j+ 1, k, t])+

dt2

dz2
(X[i, j, k− 1, t]+ X[i, j, k+ 1, t])+

αX[i, j, k, t]−X[i, j, k, t− 1]

Figure 7: Stencil kernels used in evaluation. Top:
Chombo heattut equation requires only the previ-
ous time step. Bottom: Cactus WaveToy equation
requires both two previous time steps.

has a higher computational intensity, allowing it to more
readily exploit the Cell FMA pipeline.

8.1 Algorithmic Considerations
The basic algorithmic approach to update the 3D cubic

data array is to sweep across the domain, updating one point
at a time. The simplest implementation one might imple-
ment on Cell would be similar to how it would be imple-
mented on a a cacheless vector machine. Basically read 7
streams of data (one for each each point in the stencil) and
write one stream of data. This clearly doesn’t exploit the in-
herit temporal locality in the method, and would result in 48
bytes of traffic for every 7 flops - a very poor computational
intensity. A cache based machine can partially avoid this for
problems where 6 pencils fit in cache, and more completely
when 3 planes fit in cache.

8.2 Exploiting Temporal Locality
The algorithm used on Cell is behaves virtually identi-

cally to that used on traditional architectures except that
the ISA forces main memory loads and stores to be explicit,
rather than caused by cache misses and evictions. The im-
plementation sweeps through planes updating them one at
a time. Since a stencil requires both the next and previ-
ous plane, to exploit a caching effect a minimum of 4 planes
must be present in the local stores: (z-1,t), (z,t), (z+1,t),
and (z,t+1). Additionally, bus utilization can be maximized
by double buffering the previous output plane (z-1,t+1) with
the next input plane (z+2,t).

Note that the neighbor communication required by sten-
cils is not well suited for the aligned quadword load require-
ments of the SPE ISA - i.e. unaligned loads must be emu-
lated with permute instructions. In fact, for single precision
stencils with extensive unrolling, after memory bandwidth,
the permute datapath is the limiting factor in performance
— not the FPU. This lack of support for unaligned accesses
highlights a potential bottleneck of the Cell architecture;
however we can obviate this problem for the stencil kernel
by choosing a problem size that is a multiple of the register
size. That is, in double precision, the problem size must be
a multiple of two, and in single precision, a multiple of four.

This ensures that no more than two permutes are required
for a registers worth of stencils.

8.3 Spatial Blocking and Parallelization
As each Cell SPE is a SIMD processor, it is necessary to

unroll in the unit stride direction, and beneficial to unroll
in the Y dimension (within the current plane). This two
dimensional unrolling produces register blocks that share
loads and permutes and thus help reduce total instructions
issued. These register blocks are then extruded into ribbons,
and thus planes are processed in ribbons.

In order to parallelize across SPEs, each plane of the 3D
domain is partitioned into eight overlapping blocks. Due to
the finite size of the local store memory, a straightforward
stencil calculation is limited to planes of about 2562 elements
plus ghost regions. Thus each SPE updates the core 256x32
points from a 258x34 slab (as slabs also contain ghost re-
gions). The full blocking and parallelization procedure is
shown in Figure 8

8.4 Blocking the Time Dimension
To improve performance of stencil computations on cache-

based architectures, previous research has shown multiple
time steps can be combined to increase performance [15,
18, 24, 38]. This temporal blocking can also be effectively
leveraged in our Cell implementation. By keeping multiple
planes from multiple time steps in the SPE simultaneously,
it is possible to double or triple the number of stencils per-
formed with little increase in memory traffic, thus increasing
computational intensity and improving overall performance.
Figure 9 details a flow diagram for the heat equation, show-
ing both the simple and temporally blocked implementa-
tions. Note: each block represents a plane at the specified
coordinates in space and time. It should be emphasized that
not all applications, even if they are stencil computations,
can exploit this optimization.

8.5 Stencil Kernel Results
The performance for the heattut and WaveToy stencil ker-

nels is shown in Table 4. Results show that as the number
of time steps increases, a corresponding decrease in the grid
size is required due to the limited memory footprint of the
local store. In double precision, the heat equation is truly
computationally bound for only a single time step, achiev-
ing over 7.1 Gflop/s. Analysis also shows that in the Cell+
approach, the heat equation is memory bound when using a
single time step, attaining nearly 10 Gflop/s; when tempo-
rally blocked, performance of Cell+ double precision jumps
to over 27 Gflop/s. In single precision, it is possible with
temporal blocking to achieve an impressive 65 Gflop/s!

We believe the temporal recurrence in the CACTUS Wave-
Toy will allow more time skewing in single precision at the
expense of far more complicated code. This will be the sub-
ject of future investigation.

8.6 Performance Comparison
Table 4 presents a performance comparison of the stencil

computations across our evaluated set of leading processors.
Note that stencil performance has been optimized for the
cache-based platforms as described in [17].

In single precision, for this memory bound computation,
even without time skewing, Cellpm achieves 6.5x, 11x, and
20x speedup compared with the X1E, the Itanium2 and the

Original 3D grid

SPE0 SPE1

Parallelized

z+1
z
z-1

CB1
CB0

Cache blocked

SPE1

Stream & buffer planes Register blocked

Figure 8: The original 3D grid is first parallelized among SPEs. Each SPE then partitions its block into
several cache blocks (CB), so that multiple planes fit simultaneously in the local store. The planes are
streamed into the double buffer within the local store. Once there, the cache blocked planes are further
blocked into ribbons. Finally, each ribbon is register blocked, with a 4x2 core, surrounded in 3D by a ghost
zone.

Double Precision (Gflop/s)
Cellpm

+ Cellpm
+ Cell Cellpm X1E AMD64 IA64

Stencil (4 step)
Heat 27.6 9.93 7.16 6.98 3.91 0.57 1.19

WaveToy 32.1 10.33 9.48 9.44 4.99 0.68 2.05

Single Precision (Gflop/s)
Cell Cellpm Cellpm X1E AMD64 IA64

Stencil (4 step) (4 step)
Heat 65.0 63.5 21.1 3.26 1.07 1.97

WaveToy — 63.6 22.0 5.13 1.53 3.11

Table 4: Performance for the Heat equation and
WaveToy stencils. X1E and Itanium2 experiments
use 2563 grids. The Opteron uses a 1283. Cell uses
the largest grid that would fit within the local stores.
The (n steps) versions denote a temporally blocked
version where n time steps are computed.

Opteron respectively. Recall that Cell has only four times
the memory bandwidth the scalar machines, and 75% the
bandwidth of the X1E, indicating that Cell’s potential to
perform this class of computations in a much more effi-
cient manner — due to the advantages of software controlled
memory for algorithms exhibiting predictable memory ac-
cesses. In double precision, with 1/14th the floating point
throughput of single precision, Cell achieves a 1.8x, 6x, and
12x speedup compared to the X1E, the Itanium2, and the
Opteron for the heat equation — a truly impressive result.
Additionally, unlike the Opteron and Itanium2, simple time
skewing has the potential to nearly triple the performance
in either single precision or in double precision on the Cell+
variant.

8.7 Model Validation
As with SpMV, we implemented an actual double preci-

sion kernel on a Cell blade with results shown in Table 4.
The 3% increase in actual performance is from 2D regis-
ter blocking which is not present in the performance model,
and can be seen on both single double precision kernels.
Overall, these results clearly show that Cell delivers highly
predictable performance on the stencil kernel.

9. FAST FOURIER TRANSFORMS
The FFT presents us with an interesting challenge: its

computational intensity is much less than matrix-matrix
multiplication and standard algorithms require a non-trivial
amount of data movement. Extensive work has been per-
formed on optimizing this kernel for both vector [27] and
cache-based [8] machines. In addition, implementations for
varying precisions appear in many embedded devices using
both general and special purpose hardware. In this section
we evaluate the implementation of a standard FFT algo-
rithm on the Cell processor. Our model corresponds well
with IBM’s [6] and Mercury’s [11] implementations.

9.1 Methods
We examine both the 1D FFT cooperatively executed

across the SPEs, and a 2D FFT whose 1D FFTs are each
run on a single SPE. In all cases the data appears in a sin-
gle array of complex numbers. Internally (within the local
stores) the data is unpacked into separate arrays, and a table
lookup is used for the roots of unity so that no runtime com-
putation of roots is required. As such, our results include
the time needed to load this table. Additionally, all results
are presented to the FFT algorithm and returned in natural
order (i.e. a bit reversal was required to unwind the permu-
tation process in all cases). Note that these requirements
have the potential to severely impact performance.

For simplicity, we first evaluate a naive FFT algorithm
(no double buffering and with barriers around computa-
tional segments) for the single 1D FFT. The data blocks
are distributed cyclically to SPEs, 3 stages of local work are
performed, the data is transposed (basically the reverse of
the cyclic allocation), and then 9 to 13 stages of local com-
putation is performed (depending on the FFT size). At that
point the indices of the data on chip are bit-reversed to un-
wind the permutation process and the naturally ordered re-
sult copied back into main memory. Once again, we presume
a large DMA initiation overhead of 1000 cycles. Note that a
Cell implementation where the DMA initiation overhead is
smaller, would allow the possibility of much larger FFT cal-
culations (including out of core FFTs) using smaller block
transfers, with little or no slowdown using double buffering
to hide the DMA latency.

One may now consider outer loop parallelism (multiple

z+2,t

z+1,t

z,t

z-1,t z-1,t+1

z,t+1

z+2,t

z+1,t

z,t

z-1,t

z-2,t+2

z,t+1

z-1,t+1

z-2,t+1

z-1,t+2

z+2,t

z+1,t

z,t

z-1,t

z-4,t+4

z,t+1

z-1,t+1

z-2,t+1

z-3,t+4

z-1,t+2

z-2,t+2

z-3,t+2

z-2,t+3

z-3,t+3

z-4,t+3

from DRAM

back to DRAM

from DRAM

back to DRAM

from DRAM

back to DRAM

Figure 9: Flow Diagram for Heat equation flow di-
agram. Each rectangle represents a cache blocked
plane. Top left: Without temporal blocking, only
two queues are required within each SPE. Top right:
Temporally blocked version for two time steps. Bot-
tom: Temporally blocked for four time steps. For
each phase, all queues from left to right are updated,
and then rolled.

independent FFTs) that allows reuse of the roots of unity,
and overlap of communication and computation. Before ex-
ploring the 2D FFT, we briefly discuss simultaneous FFTs.
For sufficiently small FFTs (<4K points in SP) it is possible
to both double buffer and round robin allocate a large num-
ber of independent FFTs to the 8 SPEs. Although there
is lower computational intensity, the sheer parallelism, and
double buffering allow for extremely high performance (up
to 76 Gflop/s).

Simultaneous FFTs form the core of the 2D FFT. In order
to ensure long DMAs, and thus validate our assumptions on
effective memory bandwidth, we adopted an approach that
requires two full element transposes. First, N 1D N-point
FFTs are performed for the rows storing the data back to
DRAM. Second, the data stored in DRAM is transposed
(columns become rows) and stored back to DRAM. Third
the 1D FFTs are performed on the columns, whose elements
are now sequential (because of the transpose). Finally a sec-
ond transpose is applied to the data to return it to its origi-
nal layout. Instead of performing an N point bit reversal for
every FFT, entire transformed rows (not the elements of the
rows) are stored in bit-reversed order (in effect, bit revers-
ing the elements of the columns). After the first transpose,
a decimation in frequency FFT is applied to the columns.

The columns are then stored back in bit-reversed order —
in doing so, the row elements are bit reversed. With a fi-
nal transpose, the data is stored back to memory in natural
order and layout in less time.

9.2 FFT Results
Table 5 presents performance results for the Cellpm 1D

and 2D FFT; a Cell hardware implementation will be un-
dertaken in future work. For the 1D case, more than half of
the total time is spent just loading and storing points and
roots of unity from DRAM. If completely memory bound,
peak performance is approximately (25.6GB/s/8Bytes) ∗
5NlogN/3N cycles or approximately 5.3logN Gflop/s. This
means performance is limited to 64 Gflop/s for a single 4K
point single precision FFT regardless of CPU frequency.
A clear area for future exploration is hiding computation
within the communication and the minimization of the over-
head involved with loading the roots of unity in order to
reach this upper bound.

Unfortunately the two full element transposes, used in
the 2D FFT to guarantee long sequential accesses, consume
nearly 50% of the time. Thus, although 8K simultaneous
4K point FFTs achieve 76 Gflop/s (after optimizing away
the loading of roots of unity), a 4K2 2D FFT only reaches
46 Gflop/s — an impressive figure nonetheless. Without the
bit reversal approach, the performance would have further
dropped to about 40 Gflop/s. The smaller FFT’s shown in
the table show even poorer performance.

When double precision is employed, the balance between
memory and computation is changed by a factor of 7. This
pushes a slightly memory bound application strongly into
the computationally bound domain. Thus, the single pre-
cision simultaneous Cellpm FFT is 10 times faster than the
double precision version. On the upside, the transposes re-
quired in the 2D FFT are now less than 20% of the to-
tal time, compared with 50% for the single precision case.
Cellpm

+ finds a middle ground between the 4x reduction in
computational throughput and the 2x increase in memory
traffic — increasing performance by almost 2.5x compared
with the Cellpm for all problem sizes.

9.3 Performance Comparison
The peak Cellpm FFT performance is compared to a num-

ber of other processors in the Table 5. These results are con-
servative given the naive 1D FFT implementation modeled
on Cell whereas the other systems in the comparison used
highly tuned FFTW [8] or vendor-tuned FFT implementa-
tions [28]. Nonetheless, in double precision, Cellpm is at least
3x faster than the Itanium2 for a mid sized 1D FFT, and
Cellpm

+ could be as much as 150x faster for a large 2D FFT!
Cell+ more than doubles the double precision FFT perfor-
mance of Cell for all problem sizes. Cellpm performance is
nearly at parity with the X1E in double precision; however,
we believe considerable headroom remains for more sophis-
ticated Cell FFT implementations. In single precision, Cell
is unparalleled.

Note that so long as the points fit within the local store,
FFT performance on Cell improves as the number of points
increases. In comparison, the performance on cache-based
machines typically reach peak at a problem size that is far
smaller than the on-chip cache-size, and then drops pre-

∗X1E FFT numbers provided by Cray’s Bracy Elton and
Adrian Tate.

Double Precision (Gflop/s)
N

Cellpm
+ Cellpm X1E∗ AMD64 IA64

4K 12.6 6.06 2.92 1.88 3.51
1D 16K 14.2 6.39 6.13 1.34 1.88

64K — — 7.56 0.90 1.57
1K2 15.9 6.67 6.99 1.19 0.52

2D
2K2 16.5 6.75 7.10 0.19 0.11

Single Precision (Gflop/s)
N

Cellpm
+ Cellpm X1E∗ AMD64 IA64

4K — 29.9 3.11 4.24 1.68
1D 16K — 37.4 7.48 2.24 1.75

64K — 41.8 11.2 1.81 1.48
1K2 — 35.9 7.59 2.30 0.69

2D
2K2 — 40.5 8.27 0.34 0.15

Table 5: Performance of 1D and 2D FFT in double
precision (top) and single precision (bottom). For
large FFTs, Cell is more than 10 times faster in sin-
gle precision than either the Opteron or Itanium2.
The Gflop/s number is calculated based on a naive
radix-2 FFT algorithm. For 2D FFTs the naive al-
gorithm computes 2N N-point FFTs.

cipitously once the associativity of the cache is exhausted
and cache lines are evicted due to aliasing. Elimination of
cache evictions requires extensive algorithmic changes for
the power-of-two problem sizes required by the FFT algo-
rithm, but such evictions will not occur on Cell’s software-
managed local store. Furthermore, we believe that even for
problems that are larger than local store, 1D FFTs will con-
tinue to scale much better on Cell than typical cache-based
superscalar processors with set-associative caches since local
store provides all of the benefits of a fully associative cache.
The FFT performance clearly underscores the advantages
of software-controlled three-level memory architecture over
conventional cache-based architectures.

10. CONCLUSIONS
The Cell processor offers an innovative architectural ap-

proach that will be produced in large enough volumes to be
cost-competitive with commodity CPUs. This work presents
the broadest quantitative study of Cell’s performance on sci-
entific kernels to date and directly compares performance
to tuned kernels running on leading superscalar (Opteron),
VLIW (Itanium2), and vector (X1E) architectures.

In the process of porting the scientific kernels to the Cell
architecture, we introduce a number of novel algorithmic
techniques to fully utilize unique features of the Cell archi-
tecture. First, we explore a partitioning and multi-buffering
approach to facilitate parallelization and exploit temporal
locality for the Stencil calculations on block-structured grids.
This was expanded into a more general approach to aggre-
gate multiple time-steps that complements prior work on
time-skewing approaches. Finally, we introduced an efficient
matrix partitioning strategy for SpMV that selects the ap-
propriate cache blocking at run time, resulting in improved
temporal and spatial locality as well as load balanced SPE
computations.

Additionally, we developed an analytic framework to pre-
dict Cell performance on dense and sparse matrix opera-

tions, stencil computations, and 1D and 2D FFTs. Using
this approach allowed us to explore numerous algorithmic
approaches without the effort of implementing each vari-
ation. We believe this analytical model is especially im-
portant given the relatively immature software environment
that makes makes Cell programming time-consuming. The
model proves to be quite accurate, because the program-
mer has explicit control over parallelism and data movement
through the memory subsystem.

Our benchmark suite was selected to reflect a broad range
of application characteristics, from the compute-intensive
dense matrix multiply and FFT computations, to the memory-
intensive sparse matrix vector multiply and stencil compu-
tations. Figure 10 summarizes the results, showing Cell’s
speedup over each of the evaluated platforms for both double
and single precision. The graph shows the best implemen-
tation for each machine and is based on our most accurate
data, which is our analytic model for FFTs and DGEMM
(which closely matches other published results) and hard-
ware runs on SPMV and Stencil.

Results show that only the Cray X1E supercomputer out-
performs Cell processor in any setting, and only then for
double precision DGEMM and 2D FFTs. The benefits of the
Cell architectural model is clearly demonstrated for single-
precision compute intensive problems where cell is 119-270x
faster than conventional microprocessors for the 2K2 FFTs
and 26-68x faster for SGEMM. The single-precision results
for compute-intensive problems such as DGEMM highlight
the performance benefits of a heterogeneous multicore ap-
proach, which gracefully improves the on-chip peak floating
point computational capability relative to a conventional ho-
mogeneous multicore design.

Memory intensive problems such as SpMV and Stencil
saw less dramatic performance benefits both in single and
double precision. However the relative speedups of the mem-
ory intensive problems — which exceeded 7x for memory-
bound problems such as SpMV — were far greater than
the the 4x memory bandwidth advantage of Cell’s XDR
memory over the DDR memory in the AMD64 and IA64
systems (see Table 1). The Cell processor is nearly at par-
ity with the X1E for double precision performance on the
memory-intensive algorithms, which indicates that it is com-
petitive with the vector approach to improving bandwidth
utilization by hiding memory latency. These benefits were
also apparent for the double-precision problems where, in
spite of the handicapped double precision performance, its
high memory bandwidth and explicit DMA capabilities gives
the Cell a tremendous advantage on memory-intensive prob-
lems. This provides strong evidence that Cell’s software con-
trolled memory hierarchy is better able to exploit available
memory bandwidth than conventional cache architectures,
demonstrating that Cell’s performance advantages are not
derived exclusively from its high peak performance infras-
tructure.

To further explore the trade-offs in the Cell design, we
proposed Cell+, a modest micro-architectural variant to Cell
that improves double precision throughput. Its performance
reflects that of the recently announced Cell BE2, which is
anticipated to include fully pipelined double precision float-
ing point capability. Table 6 compares the advantage of
Cell and Cell+ in terms of absolute performance and power
efficiency (and includes the raw data used in Figure 10).
Again, these results represent actual hardware experiments

35.5x 61.4x

0

2

4

6

8

10

12

14

X1E MSP 2.2GHz Opteron 1.4GHz Itanium2

C
e
ll
 D

o
u

b
le

 P
re

ci
si

o
n

 S
p

e
e
d

u
p

DGEMM SpMV Stencil 1D FFT(16K) 2D FFT(2K x 2K)

270x119x

0

10

20

30

40

50

60

70

80

X1E MSP 2.2GHz Opteron 1.4GHz Itanium2

C
e
ll
 S

in
g

le
 P

re
ci

si
o

n
 S

p
e
e
d

u
p

SGEMM SpMV Stencil 1D FFT(16K) 2D FFT(2K x 2K)

Figure 10: Cell’s Speedup. Top: Cell’s double preci-
sion speedup over the X1E, Opteron, and Itanium2.
Even in double precision Cell is easily a match for an
X1E MSP and more than a match for the Opteron
and Itanium2. Bottom: Cell’s single precision per-
formance outshines the others.

when available, and are otherwise based on our performance
model. The Cell+ results confirm the potential of the Cell
concept for computationally intensive problems: Across the
benchmarks, Cell+ is 7x to 150x faster than the Opteron and
Itanium processors and 2x faster than the Cray X1E. How-
ever, memory intensive codes such as SpMV derive virtually
no benefit from the improved double precision performance
and moderately memory-intensive problems such as Stencil
and some of the FFTs derive a modest 2x performance im-
provement for a nearly 5x improvement in double-precision
performance. Power efficiency results are similar, although
the advantage grows for Cell+ relative to the more power-
hungry Itanium processor.

Overall our analysis shows that Cell’s three level software-
controlled memory architecture, which completely decou-
ples main memory accesses from computation, provides sev-
eral advantages over mainstream cache-based architectures.
First, kernel performance can be extremely predictable as
the load time from local store is constant. Second, large
transfers (either a single long DMA or many smaller DMAs)
can maintain a much higher percentage of memory band-
width than individual loads in much the same way a vector
load or a hardware stream prefetch engine, once engaged,
can fully consume memory bandwidth. Finally, for pre-

Speedup vs. Power Efficiency vs.
DP Cell+

X1E AMD64 IA64 X1E AMD64 IA64
DGEMM 3.02 12.8 9.46 3.63 11.4 12.3
SpMV 2.33 7.39 7.39 2.80 6.58 9.61
Stencil 2.54 17.4 8.34 3.05 15.5 10.9

16K FFT 2.32 10.6 7.55 2.78 9.43 9.82
2K2 FFT 2.32 86.8 150 2.79 77.3 195

Speedup vs. Power Efficiency vs.
DP Cell

X1E AMD64 IA64 X1E AMD64 IA64
DGEMM 0.86 3.65 2.70 1.04 3.25 3.51
SpMV 2.33 7.39 7.39 2.80 6.58 9.61
Stencil 1.83 12.6 6.02 2.20 11.2 7.82

16K FFT 1.04 4.77 3.40 1.25 4.24 4.42
2K2 FFT 0.95 35.5 61.4 1.14 31.6 79.8

Speedup vs. Power Efficiency vs.
SP Cell

X1E AMD64 IA64 X1E AMD64 IA64
SGEMM 6.94 26.2 68.2 8.33 23.4 88.7
SpMV — 6.77 8.76 — 6.03 11.4
Stencil 6.47 19.7 10.7 7.77 17.6 13.9

16K FFT 5.00 16.7 21.4 6.00 14.9 27.8
2K2 FFT 4.90 119 270 5.88 106 351

Table 6: Speedup and increase in power efficiency
of double precision Cell+ (Top), Cell (Middle), and
single precision Cell (Bottom) relative to the X1E,
Opteron, and Itanium2 for our evaluated suite of sci-
entific kernels. Results show an impressive improve-
ment in performance and power efficiency. Note
that stencil results do not include temporal block-
ing since a complementary kernel version was not
available for the X1E, Opteron or Itanium2.

dictable memory access patterns, communication and com-
putation can be overlapped more effectively than conven-
tional cache-based approaches and is competitive with the
vector approach to latency hiding. Increasing the size of the
local store or reducing the DMA startup overhead on future
Cell implementations may further enhance the scheduling
efficiency by enabling more effective overlap of communica-
tion and computation.

It is important to consider our performance results in the
context of current trends in scientific applications and in
hardware. On the application side, as problem sizes scale,
computational scientists are moving away from computation-
ally-intensive algorithms based on O(n3) computations like
matrix multiply, and are increasingly relying on more scal-
able algorithms built from O(n) computational kernels —
such as variations on SPMV and Stencil. Thus, even with-
out the Cell+ boost, the memory advantages of Cell offer
real performance advantages, albeit at a significantly in-
creased software development cost. The potential is signif-
icant enough to warrant more investment in software tools
and techniques to reduce the software development overhead
associated with Cell’s novel architecture.

On the hardware side, there are increasingly prevalent
trends towards homogeneous multicore commodity proces-
sors. The first generation of this technology has instanti-
ated at most two cores per chip, and thus will deliver less
than twice the performance of today’s existing architectures.
Our work demonstrates that the heterogeneous multicore

approach of the Cell architecture enables chip designers to
instantiate eight simpler cores using the same generation
process technology while deriving considerable performance
advantages over the conventional multicore approach. The
potential factor of 2x achieved by a homogeneous multicore
is trivial compared with Cell+’s potential of a 10-20x im-
provement using the same technology generation.

Acknowledgments
This work was supported by the Director, Office of Science,
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. The authors gratefully thank Bracy El-
ton and Adrian Tate for their assistance in obtaining X1E
FFT performance data, and Eduardo D’Azevedo for provid-
ing us with an optimized X1E SpMV implementation.

11. REFERENCES
[1] G. Blelloch, M. Heroux, and M. Zagha. Segmented

operations for sparse matrix computation on vector
multiprocessors. Technical Report CMU-CS-93-173,
CMU, 1993.

[2] Cactus homepage. http://www.cactuscode.org.

[3] L. Cannon. A Cellular Computer to Implement the
Kalman Filter Algorithm. PhD thesis, Montana State
University, 1969.

[4] Cell broadband engine architecture and its first
implementation. http://www-128.ibm.com/
developerworks/power/library/pa-cellperf/.

[5] Chombo homepage.
http://seesar.lbl.gov/anag/chombo.

[6] A. Chow, G. Fossumm, D. Brokenshire A
programming example: Large FFT on the Cell
Broadband Engine 2005.

[7] E. D’Azevedo, M. R. Fahey, and R. T. Mills.
Vectorized sparse matrix multiply for compressed row
storage format. In International Conference on
Computational Science (ICCS), pages 99–106, 2005.

[8] FFTW speed tests. http://www.fftw.org.

[9] B. Flachs, S. Asano, S. Dhong, et al. A streaming
processor unit for a cell processor. ISSCC Dig. Tech.
Papers, pages 134–135, February 2005.

[10] P. Francesco, P. Marchal, D. Atienzaothers, et al. An
integrated hardware/software approach for run-time
scratchpad management. In Proceedings of the 41st
Design Automation Conference, June 2004.

[11] J. Greene, and R. Cooper. A Parallel 64K complex
FFT algorithm for the IBM/Sony/Toshiba Cell
Broadband Engine Processor. In Tech. Conf. Proc. of
the Global Signal Processing Expo (GSPx), 2005.

[12] Ibm cell specifications.
http://www.research.ibm.com/cell/home.html.

[13] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity:
Optimization framework for sparse matrix kernels.
International Journal of High Performance Computing
Applications, 2004.

[14] The Berkeley Intelligent RAM (IRAM) Project.
http://iram.cs.berkeley.edu.

[15] G. Jin, J. Mellor-Crummey, and R. Fowlerothers.
Increasing temporal locality with skewing and
recursive blocking. In Proc. SC2001, 2001.

[16] J. Kahle, M. Day, H. Hofstee, et al. Introduction to
the cell multiprocessor. IBM Journal of R&D, 49(4),
2005.

[17] S. Kamil, P. Husbands, L. Oliker, et al. Impact of
modern memory subsystems on cache optimizations
for stencil computations. In ACM Workshop on
Memory System Performance, June 2005.

[18] S. Kamil, K. Datta, S. Williams, et al. Implicit and
explicit optimizations for stencil computations. In
ACM Workshop on Memory System Performance and
Correctness, October 2006.

[19] M. Kandemir, J. Ramanujam, M. Irwin, et al.
Dynamic management of scratch-pad memory space.
In Proceedings of the Design Automation Conference,
June 2001.

[20] P. Keltcher, S. Richardson, S. Siu, et al. An equal area
comparison of embedded dram and sram memory
architectures for a chip multiprocessor. Technical
report, HP Laboratories, April 2000.

[21] B. Khailany, W. Dally, S. Rixner, et al. Imagine:
Media processing with streams. IEEE Micro, 21(2),
March-April 2001.

[22] M. Kondo, H. Okawara, H. Nakamura, et al. Scima: A
novel processor architecture for high performance
comp uting. In 4th International Conference on High
Performance Computing in the Asia Pacific Region,
volume 1, May 2000.

[23] A. Kunimatsu, N. Ide, T. Sato, et al. Vector unit
architecture for emotion synthesis. IEEE Micro, 20(2),
March 2000.

[24] Z. Li and Y. Song. Automatic tiling of iterative stencil
loops. ACM Transactions on Programming Language
Systems, 26(6), 2004.

[25] S. Mueller, C. Jacobi, C. Hwa-Joon, et al. The vector
floating-point unit in a synergistic processor element
of a cell processor. In 17th IEEE Annual Symposium
on Computer Arithmetic (ISCA), June 2005.

[26] M. Oka and M. Suzuoki. Designing and programming
the emotion engine. IEEE Micro, 19(6), November
1999.

[27] L. Oliker, R. Biswas, J. Borrill, et al. A performance
evaluation of the Cray X1 for scientific applications. In
Proc. 6th International Meeting on High Performance
Computing for Computational Science, 2004.

[28] Ornl cray x1 evaluation.
http://www.csm.ornl.gov/~dunigan/cray.

[29] N. Park, B. Hong, and V. Prasanna. Analysis of
memory hierarchy performance of block data layout.
In International Conference on Parallel Processing
(ICPP), August 2002.

[30] D. Pham, S. Asano, M. Bollier, et al. The design and
implementation of a first-generation cell processor.
ISSCC Dig. Tech. Papers, pages 184–185, February
2005.

[31] Y. Saad. Iterative Methods for Sprarse Linear
Systems, PWS, Boston, MA, 1996.

[32] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI: The Complete Reference (Vol. 1).
The MIT Press, 1998. ISBN 0262692155.

[33] Sony press release. http://www.scei.co.jp/
corporate/release/pdf/050517e.pdf.

[34] M. Suzuoki et al. A microprocessor with a 128-bit cpu,
ten floating point macs, four floating-point dividers,
and an mpeg-2 decoder. IEEE Solid State Circuits,
34(1), November 1999.

[35] S. Tomar, S. Kim, N. Vijaykrishnan, et al. Use of local
memory for efficient java execution. In Proceedings of
the International Conference on Computer Design,
September 2001.

[36] R. Vuduc. Automatic Performance Tuning of Sparse
Matrix Kernels. PhD thesis, University of California
at Berkeley, 2003.

[37] S. Williams, J. Shalf, L. Oliker, et al. The Potential of
the Cell Processor for Scientific Computing. In
Computing Frontiers, 2006.

[38] D. Wonnacott. Using time skewing to eliminate idle

time due to memory bandwidth and network
limitations. In International Parallel and Distributed
Processing Symposium (IPDPS), 2000.

