Semileptonic Decays and Sides of the Unitarity Triangle

PDF Version Also Available for Download.

Description

The elements of the CKM matrix enter the expressions for the decay rates and mixing amplitudes of hadrons. In some cases, the theoretical expressions are free of strong interaction effects, for example the CP asymmetry in B {yields} J/{psi} K{sub S}{sup 0}, so that measuring the CP asymmetry directly gives the value of sin 2{beta}, with the error in the result given by the experimental error in the measurement. In most cases, however, the experimentally measured quantities depend on strong interactions physics, and it is absolutely essential to have accurate model-free theoretical calculations to compare with experiment. A number of ... continued below

Physical Description

68

Creation Information

Ligeti, Zoltan; Bauer, C.; Bernard, C.; Bigi, I.; Datta, M.; del Re, D. et al. May 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The elements of the CKM matrix enter the expressions for the decay rates and mixing amplitudes of hadrons. In some cases, the theoretical expressions are free of strong interaction effects, for example the CP asymmetry in B {yields} J/{psi} K{sub S}{sup 0}, so that measuring the CP asymmetry directly gives the value of sin 2{beta}, with the error in the result given by the experimental error in the measurement. In most cases, however, the experimentally measured quantities depend on strong interactions physics, and it is absolutely essential to have accurate model-free theoretical calculations to compare with experiment. A number of theoretical tools have been developed over the years which now allow us to compute B decays with great accuracy, sometimes at the level of a few percent or better. These calculations are done using effective theory methods applied to QCD, and do not rely on model assumptions. Inclusive decays can be treated using the operator product expansion (OPE). The total decay rate is given by twice the imaginary part of the forward scattering amplitude, using the optical theorem. In heavy hadron decays, the intermediate states in the forward scattering amplitude can be integrated out, so that the decay rate can be written as an expansion in local operators. The expansion parameter is 1/m{sub B}, the mass of the decaying hadron. OPE techniques have been well-studied in the context of deep-inelastic scattering, where the expansion in powers of 1/Q{sup 2} is called the twist expansion. In inclusive B decays, the leading term in the 1/m{sub B} expansion gives the parton decay rate, and nonperturbative effects enter at higher orders in 1/m{sub B}.

Physical Description

68

Source

  • Workshop on the Discovery Potential of an Asymmetric B Factory at 10**36 Luminosity, Menlo Park, CA, 8-10 May 2003 and 22-24 October 2003

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-414E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 934704
  • Archival Resource Key: ark:/67531/metadc894698

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2003

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 3, 2016, 2:19 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ligeti, Zoltan; Bauer, C.; Bernard, C.; Bigi, I.; Datta, M.; del Re, D. et al. Semileptonic Decays and Sides of the Unitarity Triangle, article, May 1, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc894698/: accessed December 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.