Baselines For Land-Use Change In The Tropics: Application ToAvoided Deforestation Projects

PDF Version Also Available for Download.

Description

Although forest conservation activities particularly in thetropics offer significant potential for mitigating carbon emissions,these types of activities have faced obstacles in the policy arena causedby the difficulty in determining key elements of the project cycle,particularly the baseline. A baseline for forest conservation has twomain components: the projected land-use change and the correspondingcarbon stocks in the applicable pools such as vegetation, detritus,products and soil, with land-use change being the most difficult toaddress analytically. In this paper we focus on developing and comparingthree models, ranging from relatively simple extrapolations of pasttrends in land use based on simple drivers such as population growth ... continued below

Creation Information

Brown, Sandra; Hall, Myrna; Andrasko, Ken; Ruiz, Fernando; Marzoli, Walter; Guerrero, Gabriela et al. June 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Although forest conservation activities particularly in thetropics offer significant potential for mitigating carbon emissions,these types of activities have faced obstacles in the policy arena causedby the difficulty in determining key elements of the project cycle,particularly the baseline. A baseline for forest conservation has twomain components: the projected land-use change and the correspondingcarbon stocks in the applicable pools such as vegetation, detritus,products and soil, with land-use change being the most difficult toaddress analytically. In this paper we focus on developing and comparingthree models, ranging from relatively simple extrapolations of pasttrends in land use based on simple drivers such as population growth tomore complex extrapolations of past trends using spatially explicitmodels of land-use change driven by biophysical and socioeconomicfactors. The three models of the latter category used in the analysis atregional scale are The Forest Area Change (FAC) model, the Land Use andCarbon Sequestration (LUCS) model, and the Geographical Modeling (GEOMOD)model. The models were used to project deforestation in six tropicalregions that featured different ecological and socioeconomic conditions,population dynamics, and uses of the land: (1) northern Belize; (2) SantaCruz State, Bolivia; (3) Parana State in Brazil; (4) Campeche, Mexico;(5) Chiapas, Mexico; and (6) Michoacan, Mexico. A comparison of all modeloutputs across all six regions shows that each model produced quitedifferent deforestation baseline. In general, the simplest FAC model,applied at the national administrative-unit scale, projected the highestamount of forest loss (four out of six) and the LUCS model the leastamount of loss (four out of five). Based on simulations of GEOMOD, wefound that readily observable physical and biological factors as well asdistance to areas of past disturbance were each about twice as importantas either sociological/demographic or economic/infrastructure factors(less observable) in explaining empirical land-use patterns. We proposefrom the lessons learned, a methodology comprised of three main steps andsix tasks can be used to begin developing credible baselines. We alsopropose that the baselines be projected over a 10-year period because,although projections beyond 10 years are feasible, they are likely to beunrealistic for policy purposes. In the first step, an historic land-usechange and deforestation estimate is made by determining the analyticdomain (size of the region relative to the size of proposed project),obtaining historic data, analyzing candidate historic baseline drivers,and identifying three to four major drivers. In the second step, abaseline of where deforestation is likely to occur --a potential land-usechange (PLUC) map is produced using a spatial model such as GEOMOD thatuses the key drivers from step one. Then rates of deforestation areprojected over a 10-year baseline period using any of the three models.Using the PLUC maps, projected rates of deforestation, and carbon stockestimates, baselineprojections are developed that can be used for projectGHG accounting and crediting purposes: The final step proposes that, atagreed interval (eg, +10 years), the baseline assumptions about baselinedrivers be re-assessed. This step reviews the viability of the 10-yearbaseline in light of changes in one or more key baseline drivers (e.g.,new roads, new communities, new protected area, etc.). The potentialland-use change map and estimates of rates of deforestation could beredone at the agreed interval, allowing the rates and changes in spatialdrivers to be incorporated into a defense of the existing baseline, orderivation of a new baseline projection.

Source

  • Journal Name: Mitigation and Adaptation Strategies for GlobalChange; Journal Volume: 12; Journal Issue: 6; Related Information: Journal Publication Date: July 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--61456
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 927023
  • Archival Resource Key: ark:/67531/metadc894678

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Brown, Sandra; Hall, Myrna; Andrasko, Ken; Ruiz, Fernando; Marzoli, Walter; Guerrero, Gabriela et al. Baselines For Land-Use Change In The Tropics: Application ToAvoided Deforestation Projects, article, June 1, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc894678/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.