Advanced Variance Reduction for Global k-Eigenvalue Simulations in MCNP

PDF Version Also Available for Download.

Description

The "criticality" or k-eigenvalue of a nuclear system determines whether the system is critical (k=1), or the extent to which it is subcritical (k<1) or supercritical (k>1). Calculations of k are frequently performed at nuclear facilities to determine the criticality of nuclear reactor cores, spent nuclear fuel storage casks, and other fissile systems. These calculations can be expensive, and current Monte Carlo methods have certain well-known deficiencies. In this project, we have developed and tested a new "functional Monte Carlo" (FMC) method that overcomes several of these deficiencies. The current state-of-the-art Monte Carlo k-eigenvalue method estimates the fission source for ... continued below

Physical Description

1.1 MB

Creation Information

Larsen, Edward W. June 1, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The "criticality" or k-eigenvalue of a nuclear system determines whether the system is critical (k=1), or the extent to which it is subcritical (k<1) or supercritical (k>1). Calculations of k are frequently performed at nuclear facilities to determine the criticality of nuclear reactor cores, spent nuclear fuel storage casks, and other fissile systems. These calculations can be expensive, and current Monte Carlo methods have certain well-known deficiencies. In this project, we have developed and tested a new "functional Monte Carlo" (FMC) method that overcomes several of these deficiencies. The current state-of-the-art Monte Carlo k-eigenvalue method estimates the fission source for a sequence of fission generations (cycles), during each of which M particles per cycle are processed. After a series of "inactive" cycles during which the fission source "converges," a series of "active" cycles are performed. For each active cycle, the eigenvalue and eigenfunction are estimated; after N >> 1 active cycles are performed, the results are averaged to obtain estimates of the eigenvalue and eigenfunction and their standard deviations. This method has several disadvantages: (i) the estimate of k depends on the number M of particles per cycle, (iii) for optically thick systems, the eigenfunction estimate may not converge due to undersampling of the fission source, and (iii) since the fission source in any cycle depends on the estimated fission source from the previous cycle (the fission sources in different cycles are correlated), the estimated variance in k is smaller than the real variance. For an acceptably large number M of particles per cycle, the estimate of k is nearly independent of M; this essentially takes care of item (i). Item (ii) can be addressed by taking M sufficiently large, but for optically thick systems a sufficiently large M can easily be unrealistic. Item (iii) cannot be accounted for by taking M or N sufficiently large; it is an inherent deficiency due to the correlations between fission source estimates. In the new FMC method, the eigenvalue problem (expressed in terms of the Boltzmann equation) is integrated over the energy and direction variables. Then these equations are multiplied by J special "tent" functions in space and integrated over the spatial variable. This yields J equations that are exactly satisfied by the eigenvalue k and J space-angle-energy moments of the eigenfunction. Multiplying and dividing by suitable integrals of the eigenfunction, one obtains J algebraic equations for k and the space-angle-energy moments of the eigenfunction, which contain nonlinear functionals that depend weakly on the eigenfunction. In the FMC method, information from the standard Monte Carlo solution for each active cycle is used to estimate the functionals, and at the end of each cycle the J equations for k and the space-angle-energy moments of the eigenfunction are solved. Finally, these results are averaged over N active cycles to obtain estimated means and standard deviations for k and the space-angle-energy moments of the eigenfunction. Our limited testing shows that for large single fissile systems such as a commercial reactor core, (i) the FMC estimate of the eigenvalue is at least one order of magnitude more accurate than estimates obtained from the standard Monte Carlo approach, (ii) the FMC estimate of the eigenfunction converges and is several orders of magnitude more accurate than the standard estimate, and (iii) the FMC estimate of the standard deviation in k is at least one order of magnitude closer to the correct standard deviation than the standard estimate. These advances occur because: (i) the Monte Carlo estimates of the nonlinear functionals are much more accurate than the direct Monte Carlo estimates of the eigenfunction, (ii) the system of discrete equations that determines the FMC estimates of k is robust, and (iii) the functionals are only very weakly correlated between different fission generations. The FMC method was developed only late in the project and has to date received limited testing. Current work, which is taking place after the conclusion of this project, involves further development and testing for more complex and realistic problems. We expect that the FMC method will become a practical tool for Monte Carlo criticality simulations.

Physical Description

1.1 MB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: FG07-04ID14608
  • DOI: 10.2172/929359 | External Link
  • Office of Scientific & Technical Information Report Number: 929359
  • Archival Resource Key: ark:/67531/metadc894646

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Larsen, Edward W. Advanced Variance Reduction for Global k-Eigenvalue Simulations in MCNP, report, June 1, 2008; United States. (digital.library.unt.edu/ark:/67531/metadc894646/: accessed December 10, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.