HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

PDF Version Also Available for Download.

Description

The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and ... continued below

Creation Information

TC, MACKEY; FG, ABATT & KI, JOHNSON January 16, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Hanford Site (Wash.)
    Publisher Info: Hanford Site (HNF), Richland, WA
    Place of Publication: Richland, Washington

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks and tanks containing sludge-like materials having a shear modulus not exceeding 40,000 Pa are unlikely to be greater than those due to the uncertainties involved in the definition of the design ground motion or in the properties of the tank-waste system. This is the fundamental conclusion of the study. The study also shows that increasing the waste extensional modulus and shear modulus does not lead to increased mass participation at the impulsive frequency of the liquid-containing system. Instead, increasing the waste stiffness eventually leads to fundamental changes in the modal properties including an increase in the fundamental system frequency.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: RPP-RPT-38511 Rev 0
  • Grant Number: DE-AC27-08RV14800
  • DOI: 10.2172/946830 | External Link
  • Office of Scientific & Technical Information Report Number: 946830
  • Archival Resource Key: ark:/67531/metadc894635

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 16, 2009

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 16, 2016, 3:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

TC, MACKEY; FG, ABATT & KI, JOHNSON. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES, report, January 16, 2009; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc894635/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.