Modified Visible and Infrared Optical Design for the ITER Upper Ports

PDF Version Also Available for Download.

Description

This document reports the results of a follow-on optical design study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. The major objectives of this work are to move the viewing aperture closer to the plasma so that the optical path does not cut through any adjacent blanket shield module other than the module designated for the port; move optics forward into the port tube to increase the aperture size and therefore improve the spatial resolution; assess the trade-off between spatial resolution and spatial coverage by reducing the ... continued below

Physical Description

PDF-file: 49 pages; size: 11 Mbytes

Creation Information

Lasnier, C; Seppala, L & Morris, K April 24, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This document reports the results of a follow-on optical design study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. The major objectives of this work are to move the viewing aperture closer to the plasma so that the optical path does not cut through any adjacent blanket shield module other than the module designated for the port; move optics forward into the port tube to increase the aperture size and therefore improve the spatial resolution; assess the trade-off between spatial resolution and spatial coverage by reducing the field of view; and create a mechanical model with a neutron labyrinth. Here we show an optical design incorporating all these aspects. The new design fits into a 360 mm ID tube, as did the previous design. The entrance aperture is increased from 10 mm to 21 mm, with a corresponding increase in spatial resolution. The Airy disk diameter for 3.8 {micro}m wavelength IR light is 5.1 mm at the most distant target point in the field of view. The field of view is reduced from 60 toroidal degrees (full toroidal coverage with 6 cameras) to 50 toroidal degrees. The 10 degrees eliminated are those nearest the camera, which have the poorest view of the divertor plate and in fact saw little of the plate. The Cassegrain telescope that was outside the vacuum windows in the previous design is now in vacuum, along with lenses for visible light. The Cassegrain for visible light is eliminated. An additional set of optical relay lenses is added for the visible and for the IR.

Physical Description

PDF-file: 49 pages; size: 11 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LLNL-TR-403218
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/938503 | External Link
  • Office of Scientific & Technical Information Report Number: 938503
  • Archival Resource Key: ark:/67531/metadc894586

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 24, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 6, 2016, 1:39 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lasnier, C; Seppala, L & Morris, K. Modified Visible and Infrared Optical Design for the ITER Upper Ports, report, April 24, 2008; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc894586/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.