
Final Scientific/Technical Report:
MOLAR: Modular Linux and Adaptive Runtime Support for

High-end Computing Operating and Runtime Systems

DOE award: DE-FG02-05ER25664
reporting period: 02/05-01/09 (Y1—Y4)

PI: Frank Mueller
Department of Computer Science
North Carolina State University



1 Executive Summary
MOLAR is a multi-institution research effort that concentrates on adaptive, reliable,and efficient operating
and runtime system solutions for ultra-scale high-end scientific computing on the next generation of super-
computers. This research addresses the challenges outlined by the FAST-OS - forum to address scalable
technology for runtime and operating systems — and HECRTF — high-end computing revitalization task
force — activities by providing a modular Linux and adaptable runtime support for high-end computing
operating and runtime systems.

The MOLAR research has the following goals to address these issues.

• Create a modular and configurable Linux system that allows customized changes based on the re-
quirements of the applications, runtime systems, and cluster management software.

• Build runtime systems that leverage the OS modularity and configurability to improve efficiency,
reliability, scalability, ease-of-use, and provide support to legacy and promising programming models.

• Advance computer reliability, availability and serviceability (RAS) management systems to work
cooperatively with the OS/R to identify and preemptively resolve system issues.

• Explore the use of advanced monitoring and adaptation to improve application performance and pre-
dictability of system interruptions.

The overall goal of the research conducted at NCSU is to develop scalable algorithms for high-availability
without single points of failure and without single points of control.

2 Accomplishments
Throughout the project, NCSU has developed a scalable membership protocol for a group communication
systems without single points of failure and without singlepoints of control. The membership protocol
combines scalability with low stabilization overheads. The algorithm is the key component of a group
communication framework utilizing a fully decentralized protocol that maintains group memberships in
presence of faults. The group communication component enhances the RAS capabilities developed within
the overall project. Our group membership service and integrates with the services for distributed control
and data replication in the mid-tier of the high-availability framework for active/active head node redun-
dancy. It is also designed to support fault tolerance for compute nodes in MPI runtime systems, as detailed
in the following contributions:

1. NCSU developed runtime system mechanisms to support scalable group communication with fluctu-
ating number of nodes, reuse of network connections, transparent coordinated checkpoint scheduling
and a BLCR enhancement for job pause.

2. NCSU further developed a process-level live migration mechanism as a proactive FT to complement
reactive one. Through health monitoring, a subset of node failures can be anticipated when one’s
health deteriorates. A novel process-level live migrationmechanism supports continued execution of
applications during much of processes migration. This scheme is integrated into an MPI execution
environment to transparently sustain health-inflicted node failures, which eradicates the need to restart
and requeue MPI jobs.

3. NCSU is further developing an incremental checkpointingtechnique for MPI tasks complementary to
full checkpoints to capture only data changed since the lastcheckpoint. This significantly reduces the

1



size of checkpoint files and the overhead of checkpoint operations while only moderately increasing
restart costs relative to a restore from a single, full checkpoint.

The objectives listed in the executive summary have been metas follows:

• Modularity and Configurability: We have devised a set of methods to provide fault tolerance in HEC
systems that can be deployed individually or combined in a complementary manner.

• Efficiency: The complementary approach of fault-tolerant mechanisms results in significantly lower
overhead of the RAS software layer.

• Cooperation: The RAS layer and the OS/runtime layers cooperate in providing fault tolerance. Our
contributions range from Linux kernel enhancements (dirtypit support at page level within the mem-
ory management layer), Linux kernel module enhancements (for BLCR to support advanced, lower
overhead checkpointing) and the runtime layer (via LAM/MPIenhancements in both the LAM dae-
mon and the MPI runtime layer, which are applicable to other MPI systems as well).

• Monitoring and Adaptation: Proactive fault tolerance provided through process-level live migration
provides adaptive capabilities of fault tolerance in the presence of immanent failures detected by
health monitoring.

Benefits of this project extend particularly to high-end computing systems, such as Jaguar at ORNL’s Na-
tional Center for Computational Sciences, that increasingly have to counter component failures on a regular
basis. Our techniques provide a low overhead means to shield the effects of component failures from appli-
cations and users. Activities past the funding period include technology transfer to incorporate our BLCR
enhancements into LBNL’s BLCR code base (in cooperation with LBNL), transfer of enhancements from
LAM/MPI into OpenMPI and further development of advanced RAS techniques(all subject to obtaining
sufficient funds beyond the MOLAR project).

The overall aim is to fully integrate our techniques into community open-source codes such that future
software deployment can directly benefit from our results.

3 Research and Educational Activities
Partnership

The project is conducted in conjunction with Oak Ridge National Laboratory, the Ohio State University
and Louisiana State University. Frequent meetings enforcethe collaborative efforts of this project and their
overall integrity.

3.1 Research Activities

Activities are reported in several parts:

1. We provide an overview of the general research objectives.

2. We briefly summarize results from past reporting periods.

3. We report new results obtained during the final period.

2



General Research Objectives

In this project, we investigate a scalable approach to reconfigure the communication infrastructure after
node failures within the runtime system of the communication layer. Building on the experience of group
communication frameworks, we propose a decentralized (peer-to-peer) protocol that maintains group mem-
bership in the presence of faults.

While existing approaches provide either scalability or small reconfiguration overhead, our protocol com-
bines these features. Instead of seconds for reconfiguration, our protocol shows overhead in the order of
micro-seconds over TCP on FastEther and over MPI on Myrinet/GM. Our protocol can be configured to
match the network topology to increase communication throughput.

We utilize radix trees to implicitly encode routing information into node IDs and additionally represent
the tree structure as an array (dynamically resized upon node joins/failures) to provide access to the data
structure of individual nodes in constant time.

We also verify our experimental results against a performance model to assess the scalability of the ap-
proach. Experimental results further indicate that configuration choices of the protocol for asynchronous
communication may depend on parameters, such as latency andgap.

Our membership service combines the best of both worlds, thescalability of group membership and the
performance of existing fault-tolerant mechanisms withinhigh-performance runtime systems. We are cur-
rently assessing the protocol’s suitability for deployment with the services for distributed control and data
replication in the mid-tier of the high-availability framework for active/active head node redundancy.

Our approach is also designed to support fault tolerance forcompute nodes in MPI runtime systems in the
future, e.g., within the MPI Component Architecture (MCA) of OpenMPI, specifically as an add-on to the
Point-to-point Management Layer (PML).

Overall, our approach is general and can be applied for any group membership service or in other frame-
works that require scalable group communication, such as efficient multicast services.

Results from Past Reporting Periods

In year 1, research activities have produced 1 paper. Key findings included:

1. We have designed and implemented a group communication protocol that provides the basis for key
services in high-availability of clusters.

2. The approach is fully decentralized to avoid bottlenecks.

3. The protocol design embeds a radix tree representation that provides scalability and efficiency. Single-
node information can be accessed in constant time. The routing information is natively encoded into
node IDs of the tree representation. It also provides the means to quickly reconfigure routing paths
upon node failures.

4. The protocol can sustain single and multi-node failures.It will rebuild internal communication struc-
tures in an efficient manner.

5. The protocol is configurable to reflect switch topology.

6. The protocol scales for large number of nodes.

7. The stabilization time for reconfiguration has been assessed both qualitatively and quantitatively.

3



8. Experiments show that the qualitative model matches the quantitative measurements obtained for
TCP and GM/Myrinet.

9. The overall stabilization time is in the order of microseconds. This is considerably lower than an past
work on group communication (generally in the order of seconds).

In Y2, research activities have produced 1 paper submissionand 1 M.S. thesis. The findings include:

1. We have developed a transparent mechanism for job pause within LAM/MPI+BLCR that allows live
nodes to remain active and roll back to the last checkpoint while failed nodes are dynamically replaced
by spares before resuming from the last checkpoint.

2. The mechanism complements LAM/MPI with the scalable group communication framework based
on our work from past reporting periods.

3. We designed a fault detector based on a single timeout mechanism with the group communication
framework.

4. The mechanism supplements LAM/MPI with a novel, decentralized, scalable scheduler that trans-
parently controls periodic checkpointing and triggers process migration and job pause upon node
failures.

5. The overhead of the scheduler is only in the order of hundreds of microseconds.

6. The mechanism avoids requeuing overhead upon node failures.

7. BLCR is supplemented with a crpause mechanism to reuse the existing process resource, and
LAM/MPI is enhanced to reuse the network connections between live nodes upon the faults. Both
decrease the overhead of job pause.

8. We provide a special process migration approach, which enables seamless continuation of execution
across node failures and is suitable for proactive fault tolerance with diskless migration, to dynami-
cally replace the failed nodes with spares.

9. Experiments show that the overhead for job pause is comparable to that of a complete job restart,
albeit at full transparency and automation with the additional benefit of reusing existing resources
and continuing to run within the scheduled job.

10. The scheme offers additional potential for savings through incremental checkpointing and proactive
diskless live migration. We are currently working on investigating these topics.

In Y3, research activities have produced 2 papers. The findings include:

1. We have developed a process level live migration mechanism to complement reactive with proactive
FT. The mechanism allows continued execution of an application during much of processes migration.

2. This scheme is integrated into an MPI execution environment, LAM/MPI + BLCR, to transparently
sustain health-inflicted node failures, which also eradicates the need to restart and requeue MPI jobs.

3. By exploiting health monitoring capabilities, a subset of node failures can be anticipated due to dete-
riorating health of a node.

4



4. The mechanism supplements LAM/MPI with a novel, decentralized, scalable scheduler that trans-
parently coordinates the live migration at the process level based on the information from the health
monitor.

5. LAM/MPI is enhanced to create the connections between themigrated MPI processes and the live
processes on the operational nodes.

6. The mechanism incrementally transfers the state of the process through network connections to avoid
the overhead of storage I/O for reading/writing checkpointfiles. This also avoids roll-backs to prior
checkpoints.

7. BLCR is supplemented with a series of utilities (crprecopysource, crprecopydest, crstop, crstart,
and crsuspendcontinue etc.) to support incremental live migration and coordinate the synchroniza-
tion among the migrated processes and the live processes of the MPI application on the operational
nodes.

8. We developed a feature at the kernel level to check the dirty status of the process memory pages
transparently for the incremental migration without incurring much of any overhead.

9. We were deploying experiments with NPB benchmarks on an x86 64 cluster and planned to compare
the result with that of OS-level virtualization live migration solution.

10. This proactive FT scheme has the potential to prolong themeantime- to-failure, reactive schemes can
lower their checkpoint frequency in response, which implies that proactive FT can lower the cost of
reactive FT.

New Results Obtained during the Final Period

In the final year, research activities have produced 1 paper.The following novel key findings can be reported:

1. For the process-level live migration mechanism we developed in Y3, we deployed and finished exper-
iments with NPB benchmarks on an x8664 cluster. Experiments indicate that 1-6.5 seconds of prior
warning are required to successfully trigger live process migration while similar operating system vir-
tualization mechanisms require 13-24 seconds. This self-healing approach complements reactive FT
by nearly cutting the number of checkpoints in half when 70% of the faults are handled proactively.

2. We have developed an incremental checkpointing technique for MPI tasks complementary to full
checkpoints to capture only data changed since the last checkpoint. This significantly reduces the
size of checkpoint files and the overhead of checkpoint operations while only moderately increasing
restart costs relative to a restore from a single, full checkpoint.

3. This hybrid full/incremental checkpoint/restart scheme is integrated into an MPI execution environ-
ment, LAM/MPI + BLCR, to provide a fault-tolerant MPI runtime system.

4. The mechanism supplements LAM/MPI with a decentralized,scalable scheduler that coordinates the
full or incremental checkpoint commands based on user-configured intervals or the system environ-
ment, such as the execution time of the MPI job, storage constraints for checkpoint files and the
overhead of preceding checkpoints.

5. LAM/MPI is enhanced to drain the in-flight messages among the MPI tasks before the incremental
checkpoint, and restore them after the checkpoint.

5



6. The mechanism incrementally saves the state of the process to the storage.

7. BLCR is supplemented with a series of utilities (crfull checkpoint, crincr checkpoint and
cr fullplusincr restart etc.) to support hybrid full/incremental checkpoint/restart.

8. A set of three files serve as storage abstraction for a checkpoint snapshot:Checkpoint file acontains
the memorypage content, i.e., the data of only those memory pages modified since the last check-
point; Checkpoint file bstores memorypage addresses, i.e., address and offset of the saved memory
pages for each entry infile a; andCheckpoint file ccovers othermeta information, e.g., linkage of
threads, register snapshots, and signal information pertinent to each thread within a checkpointed
process / MPI task.

9. We used the same feature as we used for live migration at thekernel level to check the dirty status of
the process memory pages transparently for the incrementalmemory pages without incurring much
of any overhead.

10. We are deploying experiments with NPB benchmarks and mpiBLAST on an x8664 cluster and plan
to compare the result with that of single full checkpoint solution.

3.2 Educational Activities

Educational activities include coverage of high-end computing, compilation and optimization for paral-
lelism and performance analysis/tuning in two graduate classes, namely Parallel Systems and Code Opti-
mization for Scalar and Parallel Programs. The classes place strong emphasis on recent research in high-
performance computing. Students receive critical skills for careers in these areas. Industry contacts confirm
that these skills are highly valued.

4 Training
In the first year, 1 M.S. and 1 Ph.D. student were trained in conjunction with this project. In the second year,
1 Ph.D. student was trained, and 1 M.S. thesis was produced. In the third and fourth year, 1 Ph.D. student
was trained, and this Ph.D. student is scheduled to graduatewithin 6 months of the end of the project period
(Summer 2009). The student is interviewing with ORNL opening the door to continued technology transfer
of our technology into the DOE realm and HEC systems in general.

Skills acquired through the project are in the area of team work, communication and writing, the latter
through contributing to paper publications. This includespresentation skills (invited talks, poster presen-
tations at a premier conference, and thesis defenses). Furthermore, a number of independent studies were
supervised by the PIs in related areas emphasizing problem solving, design and implementation as well as
writing skills.

5 Internet
The following web site disseminates publications, abstracts and talks for this project.

http://moss.csc.ncsu.edu/∼mueller/molar.html

6 Contributions
This work pools a community of collaborators from labs, universities, and industry, to investigate adaptive,
reliable, and efficient solutions to the problems surrounding Operating and Runtime Systems (OS/R) for
Extreme Scale Scientific Computation. Building on the current open-source operating system, Linux, target
High-End Computing (HEC) applications for the next generation of supercomputers. These HEC OS/Rs

6



must scale to the levels predicted by hardware architects for both shared memory and distributed memory
platforms. Furthermore, applications must operate efficiently and reliably on any of these architectures as
transparently as possible. As described in recent reports by HECRTF and the DoE Scales workshop, system
software is a key challenge in exploiting the promise of extreme-scale scientific computing. The MOLAR
project contributes to the research by:

• Creating a modular and configurable Linux system that allowscustomized changes based on the
requirements of the applications, runtime systems, and cluster management software;

• Building runtime systems that leverage the OS modularity and configurability to improve efficiency,
reliability, scalability, ease-of-use, and provide support to legacy and promising programming models;

• Advancing computer RAS management systems to work cooperatively with the OS/R to identify and
preemptively resolve system issues; and

• Exploring the use of advanced monitoring and adaptation to improve application performance and
predictability of system interruptions.

6.1 Contributions To Human Resources

This project contributes to human resource development by educating students through research, provid-
ing new educational materials in the classroom, and giving students the communication and writing skills
needed to advance science and engineering for future generations. Hands-on computer systems and new
educational materials effectively integrate research andteaching.

6.2 Contributions to Resources for Research and Education

Hardware and software has been installed to facilitate high-throughput simulation and is managed by the
PIs and students. The new infrastructure benefits the PIs’ departments and colleges beyond the scope of the
project.

7 Publications
”MOLAR: adaptive runtime support for high-end computing operating and runtime systems” by Christian
Engelmann, Stephen L. Scott, David E. Bernholdt, NarasimhaR. Gottumukkala, Chokchai Leangsuksun,
Jyothish Varma, Chao Wang, Frank Mueller, Aniruddha G. Shet, P. Sadayappan in ACM SIGOPS Operating
Systems Review, Vol. 40, No. 2, April 2006, pages 63-72.

”Scalable, Fault-Tolerant Membership for MPI Tasks on HPC Systems” by Jyothish Varma, Chao Wang,
Frank Mueller, Christian Engelmann, Stephen L. Scott in ICS’06.

”A Job Pause Service under LAM/MPI+BLCR for Transparent Fault Tolerance” by Chao Wang, Frank
Mueller, Christian Engelmann, Stephen L. Scott in IPDPS’07.

”Proactive Fault Tolerance for HPC with Xen Virtualization” by A. Nagarajan and F. Mueller and C. Engel-
mann and S. Scott in ICS’07.

”Proactive Process-Level Live Migration in HPC Environments” by Chao Wang, Frank Mueller, Christian
Engelmann, Stephen L. Scott in SC’08

8 Additional Documents
A copy of the publication(s) is submitted with the report.

7


