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Abstract

Unlike macroparticle simulations, which are sensitive to unphysical statistical fluctuations when the number of
macroparticles is smaller than the bunch population, direct methods for solving the Vlasov equation are free from
sampling noise and are ideally suited for studying microbunching instabilities evolving from shot noise. We review a
2D (longitudinal dynamics) Vlasov solver we have recently developed to study the microbunching instability in the
beam delivery systems for x-ray FELs and present an application to FERMI@Elettra. We discuss, in particular, the
impact of the spreader design on microbunching.
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1. Introduction

The microbunching instability [1,2,3,4] in the
beam delivery systems for x-ray FELs can severely
degrade the beam quality thus compromising per-
formance. The physical processes causing the insta-
bility are very much the same as those being ex-
ploited in the undulator for lasing: particle self-fields
cause energy changes in the beam that result into
density fluctuations as the particles travels through
bending elements. In turn, these density fluctua-
tions seed larger energy variations further feeding
the amplification process. Because the most funda-
mental source of fluctuations causing the instability
is shot noise using macroparticles to simulate the
dynamics of an electron bunch may be problem-
atic unless the number of macroparticles used ap-
proaches the actual number of electrons [5]. Direct
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Vlasov solver methods offer an interesting alterna-
tive. By representing the beam density functions in
phase space on grids these methods are immune to
sampling noise and may allow for a more convincing
characterization of genuinely physical instabilities.

We have recently developed a 2D solver [6] specif-
ically devoted to the study of single pass system
of relevance for x-ray FELs. This extends previous
work [7] where Valsov solver techniques were used to
characterize the CSR-induced microbunching insta-
bilities in storage rings. Work by other investigators
using direct methods is also ongoing [8].

The solver follows the evolution of the beam den-
sity in the longitudinal phase space on the assump-
tion that changes in the transverse phase-space den-
sity due to collective effects are negligible or have
negligible consequences on the longitudinal dynam-
ics. The mixing effect of a finite transverse emittance
in the longitudinal phase space, which is present
when the beam travels through a dispersive region, is
modelled in a heuristic way by insertion of a low-pass
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Fig. 1. Beam uncorrelated rms energy spread at the exit vs
that at the entry of the linac for two FERMI lattice config-
urations. The boxes are averages value over several realiza-
tions of the initial beam perturbation modelling shot noise
(the error bars span the full data range); εx = εy = 1 µm,
If = 0.8 kA.

filter in the kernel for the evaluation of the collective
force. The solver uses simplified models for determi-
nation of the collective effects relevant for the mi-
crobunching instability, (namely longitudinal space
charge and coherent synchrotron radiation, CSR).
In its present implementation it ignores other col-
lective effects that may be otherwise important but
are not relevant for the microbunching instability.

CSR is treated in the free-space model of a beam
in uniform circular motion [2,6]. Longitudinal space
charge is described by the impedance per unit length
[9,3,6]

Ẑ(k) =
iZ0

πγrb

1− xK1(x)
x

, with x = krb/γ; (1)

where γ is the relativistic factor, K1(x) the modi-
fied Bessel function and Z0 = 120π Ω, the vacuum
impedance. This formula applies to a bunch with
transversally uniform density and circular cross sec-
tion of radius rb in free space and yields the elec-
tric field on the beam axis. To model a transversally
gaussian beam with rms sizes σx and σy we set rb =
1.7(σx + σy)/2, [3,10].

Periodic boundary conditions are enforced in the
longitudinal space coordinate. This is an effective
way to reduce the size of the grid supporting the
beam density function and hence the computation
time without significantly affecting the accuracy
of the modelling provided that the region of phase
space selected for gridding is large compared to
the length scale over which the instability devel-
ops. Shot noise is modelled by a suitable random
perturbation of the beam density in phase space at
the start of the simulation. For more details on the
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Fig. 2. The small-amplitude gain function for the mi-
crobunching instability from the end of the BC through the
spreader in the One-BC lattice (un-optimized spreader de-
sign) shows a large gain in the sub µm region. The numerical
results using the solver (dots) agree well with linear theory
(solid line).

solver we refer to [6,4].

2. Application to FERMI

The FERMI project [11] is in its final design stage.
A few unresolved issues still remain regarding some
aspects of the lattice for the beam delivery sys-
tem. The design goal is for a machine delivering a
beam with less than 150 keV (uncorrelated) energy
spread (with a normalized rms transverse emittance
of 1.5 µm). Control of the microbunching instability
is an important factor weighing in the final choice
of the lattice. A ‘laser heater’ will be in place lo-
cated right after the injector to increase the beam
uncorrelated energy spread. The purpose of a larger
beam energy spread early on is to boost phase-space
mixing and therefore smoothen the microbunching
as the beam travels through the bunch compressors.
However, simulations show that the required ‘heat-
ing’ for the two bunch-compressor (BC) lattice, the
current baseline, may be incompatible with the de-
sign goal for the energy spread. These simulations
have prompted consideration of a lattice with a sin-
gle bunch compressor providing at once the required
compression factor ' 10 needed to achieve If =
0.8 kA peak current at extraction. In the One-BC
lattice the bunches travel a longer section of the linac
with higher peak current but also with larger energy
spread. As it happens, the beneficial mixing from
the latter prevails and the net effect is to noticeably
reduce the instability. Evidence of the One-BC lat-
tice better performance is shown in Fig. 1 where we
plot the uncorrelated rms energy spread σE at the
end of the linac corresponding to various choices of
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Fig. 3. Space charge impedance vs. wavelength λ = 2π/k for
choices of beam parameters corresponding to the early part
(red dashed curve) and end of the linac (black line).

the rms energy spread σE0 at the location of the
laser heater. The beam is assumed to have an ini-
tially gaussian energy density. For a given σE0 the
resulting σE depends on the seed for the random
noise placed on the beam density at the start of the
simulations. The spread of the results (error bars in
the picture) tend to increase with the strength of
the instability. For large σE0 the instability is sup-
pressed and the energy spread at the exit tends to
CσE0 where C is the compression factor.

An interesting finding of our study concerns the
impact on microbunching of the spreader distribut-
ing the beam to the two FELs at the end of the
linac. The spreader under consideration for FERMI
consists of two pairs of magnets, each pair deliv-
ering about 100 mrad bending. For this study we
considered two spreader designs. In the first (‘un-
optimized’) design the two dipole pairs, arranged
as perfect achromats, contribute ∆R56 ' 0.9 mm
through the spreader. On the surface such a small
value for ∆R56 would seem innocuously small but
a closer look reveals that the resulting gain curve
for the microbunching instability can be surpris-
ingly high. The gain curve for the linac section from
the bunch compressor through the spreader for the
One-BC lattice is shown in Fig. 2, as determined
from linear theory (solid line) [2,12] and from the
numerical solution of the Vlasov equation (dots) –
incidentally, the close agreement between the two
calculations provides validation of our solver, at
least in the regime where linear theory applies. The
picture shows a large gain in the sub µm region
peaked at about λ ' 0.3 µm. The gain is almost
completely due to space-charge (as we verified by
turning off CSR) and can be explained in terms of
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Fig. 4. Phase-space snapshots (uncorrelated energy vs. longi-
tudinal position) at the end of the spreader (left figure) and
end of the linac for the FERMI One-BC lattice (un-optimized
spreader design); σE0 = 10 keV, If = 0.8 kA.

the properties of the longitudinal impedance model
(1). At higher energies the location in the frequency
spectrum of the space-charge impedance peak
moves toward smaller wavelengths, with the peak
value occurring at about krb/γ ' 1. Fig. 3 shows a
comparison between the spectra of the space-charge
impedance for the beam in the bunch compressor
(red curve) and toward the exit of the linac (black
curve). The transverse beam size assumed for the
black curve is for the beam in the spreader where
the beam is intentionally squeezed to minimize ef-
fects on the transverse emittance. At beam energy
E ∼ 1 GeV (end of the linac) Ẑ peaks in the λ .
1 µm spectrum region when rb . 300 µm. The peak
value Ẑpeak ∼ 0.4 × Z0/πγrb scales inversely with
γ but also with the transverse size rb. At the end
of the FERMI linac Ẑpeak is still significant as the
large beam energy is offset by small transverse beam
sizes. A small relative rms energy spread (because
of the large energy at the end of the linac) provides
limited phase-space mixing causing negligible at-
tenuation of the gain function (and also causing the
wavelength λ ' 0.3 µm of the gain function peak to
overlap with that of the space-charge impedance).
The effect of the spreader on the beam phase-space
is to cause an energy modulation at the MeV level
(see Fig. 4).

An effective way to reduce the instability is to
modify the spreader design to minimize ∆R56. This
can be achieved in two ways: by reducing the dipole
length (while increasing the magnetic field in or-
der to maintain the same bending angle) and locally
compensating ∆R56 with a suitable setting of the
dispersion function within the dipoles (which has
the effect of spoiling the achromatic properties of
each dipole pair). Notice that reducing the dipole
length (and hence the radius of curvature ρ) does
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Fig. 5. As Fig. 4 but with optimized spreader design.

not worsen the CSR effects as for a fixed bend an-
gle ∆θ these scale as ρ1/3∆θ. For this study we have
used both strategies and considered a second (’opti-
mized’) spreader design yielding ∆R56 < 5 µm from
end to end of the spreader and a maximum local
deviation within the spreader smaller than 40 µm.
The resulting gain curve for microbunching (not
shown here) has a peak value of only a few units and
causes no noticeable impact on the beam, as shown
in Fig. 5. 1

Although a careful investigation of the depen-
dence of our results on the numerics (and in partic-
ular the choice of the grid size for representing the
beam density) gives us some confidence that these
results represent believable solutions of the Vlasov
equation, there remains a question on whether the
model being used, specifically that of longitudinal
space charge, is sufficiently accurate. There are sev-
eral approximations involved: the model is based
on the assumption of an axis-symmetric beam with
uniform transverse density and yields the on-axis
longitudinal electric field in response to a purely
longitudinal perturbation. An underlying assump-
tion is that one can ignore fluctuations in the trans-
verse density. This 1D model is a good approxima-
tion in regions of the spectrum corresponding to
a length scale λ/2π large compared to rb/γ. How-
ever, the 1D model breaks down when 2πrb/λγ be-
comes comparable to or is larger than ∼ 0.5 [10].
This includes the region of the spectrum where the
impedance (1) reaches its peak. Through the bunch
compressors in the FERMI lattice we are generally
in a regime where the relevant frequency band of
the space charge impedance is safely on the side
where the 1D approximation holds (as the peak of
the impedance falls in a region of the frequency spec-
trum where microbunching is effectively suppressed

1 This was the spreader design used for the calculations of
Fig. 1.

by the beam energy spread). This is not the case at
the end of the linac where the relative energy spread
is small and a modest ∆R56 through the spreader
suffices to amplify frequencies in the very high fre-
quency end of the spectrum.

While it is comforting to know that if the lon-
gitudinal space-charge electric field in the sub µm
region is indeed as intense as predicted by the 1D
model there exist technical solutions to minimize
the microbunching in the spreader (by controlling
∆R56) more investigations are required to determine
if these are actually needed. A numerical comparison
between the field as predicted by the 1D model and
evaluated from distributions of macroparticles using
a full 3D Poisson solver could help settle this point
and is in our plans. (Macroparticle simulations for
the FERMI lattices carried out so far [5] are incon-
clusive as the grid resolution for solving the Poisson
equation in those simulations was insufficient).

In conclusion, we have shown that direct tech-
niques to solve the Vlasov equation represent a vi-
able method for the study of the microbunching in-
stability evolving from shot noise. While more work
is needed to assess the reliability of the 1D model of
space charge used in the solver the evidence so far is
that the One-BC lattice proposed for FERMI should
meet the specified σE < 150 keV beam-quality re-
quirement.
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Department of Energy Contract No. DE-AC02-
05CH11231.
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