Improved Prediction of the Doppler Effect in TRISO Fuel

PDF Version Also Available for Download.

Description

The Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated High Temperature Reactors that use fuel based on TRISO particles. It follows that the correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat transfer and temperature rise must be correctly predicted. This paper presents an improved model for the TRISO particle and its thermal behavior during transients. The improved approach incorporates ... continued below

Creation Information

Ortensi, J. & Ougouag, A.M. May 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated High Temperature Reactors that use fuel based on TRISO particles. It follows that the correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat transfer and temperature rise must be correctly predicted. This paper presents an improved model for the TRISO particle and its thermal behavior during transients. The improved approach incorporates an explicit TRISO heat conduction model to better quantify the time dependence of the temperature in the various layers of the TRISO particle, including its fuel central zone. There follows a better treatment of the Doppler Effect within said fuel zone. The new model is based on a 1-D analytic solution for composite media using the Green’s function technique. The modeling improvement takes advantage of some of the physical behavior of TRISO fuel under irradiation and includes a distinctive look at the physics of the neutronic Doppler Effect. The new methodology has been implemented within the coupled R-Z nodal diffusion code CYNOD-THERMIX. The new model has been applied to the analysis of earthquakes (presented in a companion paper). In this paper, the model is applied to the control rod ejection event, as specified in the OECD PBMR-400 benchmark, but with temperature dependent thermal properties. The results obtained for this transient using the enhanced code are a considerable improvement over the predictions of the original code. The incorporation of the enhanced model shows that the Doppler Effect plays a more significant role than predicted by the original unenhanced model based on the THERMIX homogenized fuel region model. The new model shows that the overall energy generation during the rod ejection transient is significantly lower than predicted by the unenhanced model. The fuel temperature reaches a slightly higher maximum, but at no time does it approach the nominal allowable TRISO fuel temperature. The analyses with the enhanced model also show that the reactor period during the cool down is larger than previously predicted with the homogenous fuel region model.

Source

  • 2009 International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics,Saratoga Springs, New York,05/03/2009,05/07/2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-08-14877
  • Grant Number: DE-AC07-99ID-13727
  • Office of Scientific & Technical Information Report Number: 940416
  • Archival Resource Key: ark:/67531/metadc894455

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2009

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 7, 2016, 4:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ortensi, J. & Ougouag, A.M. Improved Prediction of the Doppler Effect in TRISO Fuel, article, May 1, 2009; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc894455/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.