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Abstract 
 
Under extreme loading conditions most often the extent of material and structural 
fracture is pervasive in the sense that a multitude of cracks are nucleating, 
propagating in arbitrary directions, coalescing, and branching.  Pervasive fracture is a 
highly nonlinear process involving complex material constitutive behavior, material 
softening, localization, surface generation, and ubiquitous contact.  Two primary 
applications in which pervasive fracture is encountered are (1) weapons effects on 
structures and (2) geomechanics of highly jointed and faulted reservoirs. 
 
A pure Lagrangian computational method based on randomly close-packed Voronoi 
tessellations is proposed as a rational approach for simulating the pervasive fracture 
of materials and structures.  Each Voronoi cell is formulated as a finite element using 
the reproducing kernel method.  Fracture surfaces are allowed to nucleate only at the 
intercell faces.  The randomly seeded Voronoi cells provide an unbiased network for 
representing cracks.  In this initial study two approaches for allowing the new 
surfaces to initiate are studied:  (1) dynamic mesh connectivity and the instantaneous 
insertion of a cohesive traction when localization is detected, and (2) a discontinuous 
Galerkin approach in which the interelement tractions are an integral part of the 
variational formulation, but only become active once localization is detected. 
 
Pervasive fracture problems are extremely sensitive to initial conditions and system 
parameters.  Dynamic problems exhibit a form of transient chaos.  The primary 
numerical challenge for this class of problems is the demonstration of model 
objectivity and, in particular, the identification and demonstration of a measure of 
convergence for engineering quantities of interest. 
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1.  INTRODUCTION  

Possible structural responses from extreme loading conditions, such as blast loads, can range 
from intact vibrational response to complete fragmentation.  A structure transitions from an 
intact continuum to a discontinuum through crack initiation and propagation.  The extent of 
fracturing is termed pervasive when a multitude of cracks arbitrarily nucleate, propagate, 
coalesce, and branch.  The simulation of pervasive structural failure is further complicated by the 
ubiquitous self contact that accompanies new crack surfaces.  In order to design structures to 
withstand extreme loading conditions it is imperative to have accurate computational solid 
mechanics methodologies for simulating pervasive failure.  Any computational methodology that 
strives to model pervasive failure must include the ability to numerically represent the 
progression of a body from a continuum description to a discontinuum description.  In addition 
any computational methodology must be objective such that the simulation results do not depend 
on subjective properties of the model such as mesh design.  One necessary condition for 
simulation objectivity is that the numerical approximation converges with discretization 
refinement.  Without convergence to the necessary ‘engineering accuracy,’ numerical results and 
predictions are suspect, rendering validation, uncertainty quantification efforts, and general use 
in engineering design suspect as well. 
 
Currently, there is a very limited set of computational tools available that can attempt to simulate 
the pervasive failure of structures.  Common and often unsatisfactory techniques include 
‘element death’ in Lagrangian finite element codes and ‘void insertion’ in hydrocodes.  The 
enriched finite element methods (generalized finite element method and extended finite element 
method) have had success in modeling dilute fracture problems [1,2].  Once crack branching and 
crack coalescence phenomena appear, the prospect of modeling a multitude of arbitrary three-
dimensional intersecting cracks quickly becomes untenable.  A variety of meshless or particle 
methods have been developed in the past fifteen years with the goal of modeling extreme 
deformation of solids including pervasive failure [3].  Examples include spherical particle 
hydrodynamics [4], element free Galerkin [5], reproducing kernel method [6], cracked particles 
[7], material point method [8], peridynamics [9], particle in element [10], and element to particle 
conversion [11].  In general, these methods have had success in modeling certain classes of 
pervasive failure, e.g. perforation.  In contrast, Ortiz and coworkers [12−17] have pursued the 
concept of using standard finite element methods for modeling pervasive failure, in particular, 
tetrahedral meshes, but with fracture surfaces allowed to nucleate and propagate only along the 
interelement faces.  At the inception of material softening and localization the mesh connectivity 
is modified to reflect the new surface and a cohesive traction with a softening behavior is 
dynamically inserted.  This seemingly severe restriction of only allowing fracture surfaces to 
nucleate at interelement faces, as opposed to unrestricted methods modeling single crack growth, 
offers several advantages in the simulation of pervasive failure.  In a continuum the intersection 
of multiple arbitrarily intersecting general crack surfaces can result in subdomains whose surface 
topology is ill-posed for further computation.  The restriction of only allowing new surfaces to 
form at interelement faces provides a necessary regularization of the resulting domain and 
surface topologies.  For example, variational methods for solving the governing equations of 
motion, e.g. the finite element method, require that the domain have a Lipschitz continuous 
boundary.  Thus, as the original domain fractures and disassociates into subdomains, each sub-
domain needs to have a Lipschitz continuous boundary as well.  Also, the resulting subdomains 
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could be arbitrarily small making further computation impossible in an explicit-dynamics 
framework.  The restriction of only allowing new surfaces to form at interelement faces provides 
a priori the constraint on minimum edge size and subsequent critical-time step necessary in an 
explicit dynamic numerical solution.  Furthermore, the restriction of only allowing new surfaces 
to form at interelement faces results in a time varying domain whose volume is continuous in 
time.  This is not the case in most particle methods whose continuum representation evolves into 
a collection of spheres. (Recall that the theoretical maximum packing for equi-sized spheres is 
only 74%.)  This continuity of volume in time can be very important in confined problems such 
as penetration and reconsolidation.   
 
In this report a pure Lagrangian computational method is proposed for modeling pervasive 
fracture.  Fracture surfaces are allowed to nucleate and propagate only along interelement faces 
of a domain mesh.  The use of an unstructured mesh, even an unstructured tetrahedral mesh, is 
potentially biased with respect to edge and face orientation which could lead to nonobjective 
numerical predictions.  Ideally, the face structure should be completely random to remove any 
bias.  Instead of using a tetrahedral mesh, a randomly close packed (RCP) Voronoi tessellation 
[18] of the domain is used.  The resulting random face network provides an unbiased 
computational basis for representing fracture surfaces in a homogenous isotropic continuum.  
The polyhedral cells of the RCP Voronoi tessellation are formulated as finite elements using the 
reproducing kernel method [6].  The resulting polyhedral elements have a number of desirable 
properties including convexity and relatively large included angles.  This latter property is 
expected to result in increased robustness in large deformation analyses of ductile materials.  
Additionally, the Voronoi face network provides a convenient discrete structure for studying 
fracture surface topology and percolation like processes during impact and fragmentation.   
 
Two approaches for allowing the new fracture surfaces to initiate are studied:  (1) dynamic 
connectivity and the instantaneous insertion of a cohesive traction when localization is detected, 
and (2) a discontinuous Galerkin approach in which all finite elements are disconnected and the 
interelement tractions are an integral part of the variational formulation but only become active 
once localization is detected.  The former is computationally efficient but exhibits undesirable 
artificial vibrational behavior in low-energy problems due to fundamental inconsistencies 
between nodal forces assembled from element stresses and interelement tractions obtained from 
element stresses.  The latter method has the potential to be much smoother in time but is still an 
active area of research. 
 
The primary objectives of this report are (1) to propose the use of randomly close-packed 
Voronoi tessellations for simulating pervasive fracture and (2) to elucidate the difficulties in 
defining and demonstrating convergence for this class of problems.  Future work will focus on 
validation.  This paper is organized as follows.  The randomly close-packed Voronoi tessellation 
is described in Section 2.  Section 3 discusses the polyhedral finite element formulation based on 
the reproducing kernel method.  Section 4 gives an overview of the dynamic mesh connectivity 
algorithm and an overview of the self-contact algorithm.  A discussion on the limits of 
predictability for pervasive failure problems along with proposed weaker definitions of 
convergence from statistical theory is given in Section 5.  A two dimensional example of a quasi-
brittle structure impacting a rigid surface is presented in Section 6 based on the dynamic mesh 
connectivity approach.  Further abstractions enabled by a discrete fracture representation are 
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presented in Section 7.  Section 8 discusses an initial validation approach choosing concrete as 
the material of interest.  Section 9 presents the discontinuous Galerkin approach for 
incorporating cohesive tractions.  A summary is given in Section 10. 
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2. RANDOMLY CLOSE-PACKED VORONOI TESSELLATIONS 
 
Voronoi tessellations have a rich history in mathematics and science and have a number of 
advantageous properties [19].  Given a finite set of points {Xi} or nuclei, the Voronoi tessellation 
is defined as the collection of regions or cells Vi where 
 

{ }),(),(| XXXXX ji
ji

i ddV <=
≠
I 555                   (1) 

 
Here, X represents an arbitrary point in the domain, and the function d is the Euclidean distance 
between two points.  Each spatial point belonging to the Voronoi cell i is closer to nucleus i than 
all other nuclei.  Note that each Voronoi cell is defined as the intersection of half-spaces and is 
thus convex.  An example of a two dimensional Voronoi cell is shown in Figure 1.  While the 
Voronoi tessellation can be formed from any finite set of points or seeds, a special structure 
arises from the study of close packing of equi-sized hard spheres [20].  A classic experiment of 
dropping hard spheres into a relatively large container produces a structure known as random 
close-packed (RCP) [18].  Unlike the well known hexagonal close-packed (HCP) structure with a 
packing factor of 0.740, the RCP structure exhibits a maximum packing factor of only 0.637.  An 
example of the associated Voronoi tessellation for both the HCP and RCP structures in two 
dimensions is shown in Figure 2.  The RCP structure arises in a number of scientific fields and 
has been extensively studied.  The RCP structure provides a foundation for the study of 
amorphous solids as described by Zallen [18].  The statistical geometry aspects of RCP 
structures and their associated Voronoi diagrams have been studied by Finney [21].  In three 
dimensions the average number of nearest neighbors is 14.3.  For comparison, the number of 
nearest neighbors of the hexagonal close-packed structure is exactly 14.  For the RCP structure 
the average aspect ratio of each Voronoi cell is approximately one.  The median number of cell 
faces is 14 with a large majority of the face distribution in the range of 13 to 16.  The median 
number of edges of each cell face is 5 with a large majority of the distribution in the 4 to 6 range.  
Most importantly each junction or node of the RCP Voronoi structure is randomly oriented with 
only a short range correlation to neighboring nodes.  Thus, with respect to crack propagation 
along the Voronoi face network, it is expected that the RCP Voronoi structure will provide an 
unbiased and perhaps optimal face basis for representing semi-arbitrary crack growth in an 
isotropic medium.  In two dimensions the RCP Voronoi structure results in cells with an average 
number of edges of exactly 6 and an average interior vertex angle of approximately 120° [18].  
These relatively large interior angles compared to conventional triangle and quadrilateral meshes 
are expected to result in relatively robust behavior in problems with large strain gradients.   
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Figure 1.  A collection of points and their associated Voronoi diagram defined by Eq.(1). 
 
 

(a) (b)  
 

Figure 2.  The associated Voronoi diagram for both an hexagonal close packed array of 
points (a) and a randomly close packed array (b).  The resulting cell structures tessellate 

the domain using 126 cells. 
 
Bolander and coworkers [22−25] have used RCP Voronoi tessellations in spring-lattice models 
to simulate quasistatic crack growth in an isotropic medium.  Their process for generating the 
RCP Voronoi seeds is followed here with only minor modifications.  For a given characteristic 
length h, points are randomly and sequentially placed in the domain with a constraint on 
minimum distance between points.  The constraint is enforced by merely discarding those new 
points that violate the constraint.  The seeding process stops when the maximum packing 
threshold is reached within tolerance.  Given the RCP point distribution, a number of techniques 
can be used to generate the Voronoi tessellation.  Here, the domain is first triangulated using the 
Bowyer-Watson insertion algorithm resulting in a Delaunay triangulation (see Figure 3) [26,27].  
The Voronoi diagram is simply the dual of the Delaunay triangulation in the sense that the 
Voronoi cell nuclei are the vertices of the Delaunay triangulation, and the vertices of the Voronoi 
cells are the circumcenters of the Delaunay triangles.  The generation of the Voronoi diagram is 
straight forward in unbounded domains but is nontrivial near geometrically ‘complex’ 
boundaries due to the need for intersection operations.   
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(a) (b) (c)  
 

Figure 3.  Process used to create the randomly close packed Voronoi tessellation:  (a) 
random seeding until the theoretical maximum packing is reached with a constraint on 

minimum distance between points, (b) Delaunay triangulation, and (c) dual Voronoi 
tessellation. 

 
In practice the RCP Voronoi tessellation can contain a number of relatively small edges.  To 
regularize the mesh for use in explicit dynamics, these small features are simply deleted and the 
node pairs equivalenced in a recursive manner.  Figure 4 shows the effect of this mesh 
regularization step on the Voronoi tessellation given in Figure 3.  There is no discernable change 
in the tessellation.  Histogram plots are also given showing the number of elements with a given 
number of edges both before and after the deletion of small edges.  A majority of elements have 
six sides with all elements having in the range of four to eight sides after regularization. 
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Figure 4.  Regularization of the Voronoi tessellation by removing relatively small edges 
and equivalencing nodes:  (a)  raw Voronoi tessellation and (b) Voronoi mesh with 

constraint on minimum edge size.  The histogram of the number of elements for a given 
number of edges is also given. 
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3. POLYHEDRAL ELEMENT FORMULATION 
 
A general displacement based finite element formulation for plane faceted polyhedra applicable 
to large deformations has been achieved by Rashid [28] by developing incompatible polynomial 
based shape functions defined on the reference configuration that satisfy the minimum properties 
for convergence.  Idelsohn, et al [29] used natural neighbor coordinates of a Delaunay 
tessellation of points to develop a ‘meshless’ finite element method.  Wachspress [30] used 
perspective geometry concepts to develop rational shape functions on polyhedra.  Sukumar [70] 
has developed a finite element formulation for convex polygons using shape functions defined on 
regular polygons.  Ghosh [31−33] has developed polygonal elements based on the assumed-
stress hybrid finite element method.  An alternative polyhedral finite element formulation is 
introduced here.  The reproducing kernel method [6] is used to generate compatible shape 
functions directly on the reference configuration.  Since there is no mapping to a ‛parent’ 
element, the polyhedra can be non-convex.  Thus, it is expected that these elements will be 
relatively robust under large deformations and large strain gradients.  A functional comparison 
between these various approaches is being investigated.  In the reproducing kernel method the 
nodal shape functions ψI(x) are generated by first defining a nodal weight function wI(x) that has 
compact support, has a maximum value at the node, and is smoothly and monotonically 
decreasing away from the node.  In typical meshfree applications the nodal weight functions are 
given circular supports in two dimensions and spherical supports in three dimensions.  The nodal 
shape function is then defined as a spatial modulation of the nodal weight function, 
 

)()()( xxx III wC=ψ                         (2) 

 
where the nodal modulation function CI(x) is chosen so that ψI(x) satisfies the desired 
reproducing and consistency requirements [3].  Let  
 

})()()({)( 321
T Lxxxxg ggg=                    (3) 

 
be the vector of desired basis functions gi(x).  For linear consistency g(x) is taken to be  
 

}1{)(T zyx=xg                         (4) 

 
Let N be the set of all nodes whose weight function support contains the location x.  The 
reproducing property of the shape function takes the form 
 

)()()( xgxgx =∑
∈NI

IIψ                          (5) 

 
In order to satisfy Eq. (5), CI(x) is taken to be of the form 
 

)()()( T
IIC xxgxx −= a                         (6) 
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where  
 

})()()({)( 321
T Lxxxx aaa=a                    (7) 

 
is a vector of unknown scalar valued functions ai(x).  For linear consistency, substituting Eqs. (2) 
and (6) into Eq. (5) yields the matrix equation 
 

TT }0001{)()( =xxA a                      (8) 

 
where A(x) is given by 
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Calculating the inverse of A(x) allows for the solution of the ai(x) in Eq. (7) and CI(x) in Eq. (6).  
The spatial derivatives of the shape functions can be calculated by direct differentiation of 
Eqs. (6), (8), and (9) [5].  By construction both the spatial coordinate x and the displacement 
field u are interpolated by the shape functions ψI(x) 
 

∑
∈

=
NI

II xxx )(ψ  ,  ∑
∈

=
NI

II uxxu )()( ψ                  (10) 

 
Thus, by definition this element formulation is isoparametric.  Now consider the application of 
this general shape function construction to a Voronoi mesh.  First, the nodal weight function is 
defined as follows.  The compact support of node I is chosen to be the union of element domains 
attached to node I as with standard finite elements.  Let this domain be denoted by ΩI with 
boundary ΓI and outward unit normal n.  The nodal weight function is defined as the solution to 
the following auxiliary Poisson problem, 
 

∅≠Γ∩Γ=⋅∇
∅=Γ∩Γ=

Ω=+∇

I

I

I

onw
onw

inw

0
0

012

n
                     (11) 

 
This auxiliary problem may be efficiently solved using standard boundary element techniques 
[34] to obtain the value of the weight function and its derivatives at the Voronoi cell integration 
points xj, j = 1, …, M, although in the two-dimensional example problem given in Section 6 the 
finite element method was used.  Eqs. (2) through (11) can then be used to calculate the shape 
function ψI(x).  Note that by construction, ψI(xJ) = δIJ , and thus ψI(x) satisfies the Kronecker 
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delta property.  Also, along any edge there are only two supporting nodes.  Therefore, the shape 
functions vary linearly along element edges.  Thus, at least in two dimensions, these polyhedral 
finite elements are compatible with the standard first-order finite elements.  For an example, the 
weight function and resulting shape function corresponding to an interior node of a regular 
hexagonal mesh is shown in Figure 5.   
 

 
 

Figure 5.  (a) Contour plot of the nodal weight function for an interior node of a regular 
hexagonal mesh.  The weight function is obtained by solving the local boundary value 
problem defined by Eq. (11).  (b) Contour plot of the shape function resulting from the 

application of the reproducing kernel methodology. 
 
Note that the shape functions are defined directly on the undeformed configuration.  There is no 
mapping to a ‛parent’ element.  Thus, a total Lagrangian formulation of the governing equations 
is appropriate [35].  The conservation of linear momentum takes the form [5] 
 

uP &&ooDIV ρρ =+ f                         (12) 

 
where f is the body force vector per unit mass, u is the displacement vector, ρo is the reference 
density, P is the first Piola-Kirchhoff stress tensor,  
 

( ) IXPIPP :: ∂∂=∇≡ oDIV                      (13) 

 
 I is the identity tensor, and X represents the position vector in the reference configuration.  The 
weak form of Eq. (13) is given by 
 

( ) dAdVdVdV ∫∫∫∫
ΓΩΩΩ

•+⊗∇−•=•
oooo

oooo utu:Puuu δδδρδρ f&&         (14) 

 
where Ωo is the reference domain with boundary Γo, to is the traction vector per unit initial area, 
and the displacement vector u and the virtual displacement vector δu are members of the usual 
function spaces [35]. 
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Rashid [28] has proposed a general methodology for developing Gauss points and their weights 
for integrating the weak form of the equilibrium equation for polyhedral elements.  For the two-
dimensional applications presented here, a reduced approach is adopted since each element 
domain is star shaped, and can be triangulated by connecting the element nodes to the element 
centroid.  Standard Gauss rules for triangles are then applied.  Chen [36] has noted that element 
formulations based on non-polynomial shape functions can result in a violation of the discrete 
form of Gauss’s theorem (resulting from Gauss integration) with a subsequent reduction in 
accuracy and convergence rate.  The shape functions formulated here are rational functions.  For 
a given shape function ψ the continuous version of Gauss’s theorem over an element subdomain 
Ωe with boundary Γe and outward unit normal ni is given by  
 

∫∫
ΓΩ

=
ee

ii nψψ ,                           (15) 

 
The discrete form is given by 
 

∑∑ Γ=
j

j
i

j
j

j
i

j
j nψωψω ,                        (16) 

 
where ψj ≡ ψ(xj) and xj are the integration points with weights ωj in the domain and ωΓ

j on the 
element boundary.  While Eq. (11) is a mathematical identity for any sufficiently smooth 
function, Eq. (12) does not in general hold.  Herein, to maintain this identity the shape function 
derivatives at the integration points are modified by solving a linear programming problem based 
on the L2 minimization of the difference of the shape function derivatives and their original 
values with Eq. (12) as a constraint.  Typical corrections are on the order of only a few percent.  
These corrections are spatially local and do not require a global equation solution.  Also, since a 
total Lagrangian formulation is used, the shape function derivatives are only corrected once, at 
the start of the analysis.  Figure 6 shows the effect of this correction on the accuracy and 
convergence rate for a standard beam-bending verification problem [37] using a rectangular 
domain with an aspect ratio of 4.62 and a regular hexagonal mesh.  Without the correction, the 
L2 convergence rate in the displacement field is only 1.13.  With the correction, the convergence 
rate is 1.88 which is close to the theoretical value of 2.0 for low order isoparametric elements. 
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Figure 6.  Effect of discrete integration consistency on the L2 norm of the displacement 
error for the beam-bending verification problem using a regular hexagonal mesh with cell 

size h (plane stress, Poisson’s ratio = 0.3, beam aspect ratio = 4.62). 
 
Even though there is no mapping to a parent element in this element formulation, it is still 
expected that the robustness of these elements in large deformation analyses will be optimized 
when interior angles are maximized.  Figure 7 shows the L2 convergence rate in the displacement 
field for the beam-bending verification problem for two random perturbations of the regular 
hexagonal mesh.  The normalized maximum perturbation for each mesh is denoted by r.  There 
is only a slight sensitivity in the solution behavior to the initial shape of the elements.  To handle 
incompressibility, a standard mean dilation formulation is used [28,38].  Figure 8 shows the 
effect of Poisson’s ratio on the accuracy and convergence rate of the beam-bending verification 
problem for the case of plane strain.  The mean dilation formulation essentially eliminates the 
typical locking behavior.   
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Figure 7.  Sensitivity of the L2 norm of the displacement error to perturbations in the 
regular hexagonal mesh for the beam-bending verification problem (plane stress, 

Poisson’s ratio = 0.3). 
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Figure 8.  Effect of Poisson’s ratio on the L2 norm of the displacement error for the beam-

bending verification problem using a mean dilation formulation and a distorted 
hexagonal mesh (r = 0.2, plane strain). 

 
In the results presented so far each element has been integrated by triangulating the element and 
using standard three-point Gauss integration for each triangle.  Since each element is star shaped 
the triangulation is obtained simply by connecting the element centroid with each element node.  
Figure 9 shows the effect of the number of integration points on the accuracy and convergence 
rate of the beam-bending verification problem for the case of plane stress.  The use of a 
minimum number of integration points (while avoiding zero-energy modes) results in increased 
accuracy for the plane stress case.  The plane strain case exhibited an opposite effect.   
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Figure 9.  Effect of number of element integration points on the L2 norm of the 
displacement error for the beam-bending verification problem using a distorted 

hexagonal mesh (r = 0.2, plane stress). 
 
An explicit dynamics central difference time integration scheme [39] is used to integrate the 
semi-discrete equations resulting from Eq. (14).  The mass matrix is diagonalized using the 
‛special lumping technique’ of Hinton [40] as it always produces positive lumped masses.  This 
mass lumping procedure is recommended by Hughes for non-standard element formulations 
[41]. 
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4. DYNAMIC MESH CONNECTIVITY AND CONTACT 
 
Since the generation of one or more new fracture surfaces (faces in three dimensions and edges 
in two dimensions) can occur every time step, an efficient algorithm and data structure is needed 
to update the mesh connectivity as these surfaces nucleate.  The possible algorithms may be 
partitioned into two paradigms:  (1) ‛top-down’ modification and (2) ‛bottom-up’ modification.  
A top-down algorithm attempts to locally modify the mesh connectivity while minimizing the 
overall change to the underlying data structure and may be recursive in nature (see, for example, 
[12]).  Alternatively, a bottom-up algorithm assumes that there are a large number of new crack 
faces per time step.  The initial connectivity is completely discarded and recreated using the new 
fracture state.  Top-down modifying algorithms are very efficient when there are a small number 
of new crack faces, but their implementation is somewhat involved.  Herein, a bottom-up 
modification algorithm is used.  At the beginning of the connectivity update process all elements 
are taken to be disconnected with unique nodes.  Let the ordered pair (a, i) represent the ith node 
of the ath element.  An equivalence relation [42] is defined on the set of element nodes such that 
(a, i) and (b, j) are equivalent if they are directly connected across an uncracked face (3D) or 
edge (2D).  This equivalence relation is used to partition the set of all element nodes into 
equivalence classes [42].  At the end of the connectivity update process a new global node is 
created for each equivalence class.  The position and velocity of the old global nodes are then 
copied into the new definitions.  The partition of the element nodes requires only a single pass 
through all face pairs.  The partition is initialized by taking each element node to be a unique 
mathematical set.  During the pass through the list of face pairs, sets are united using the 
criterion described above.  The final collection of sets constitutes the partition.  This 
methodology has proven to be simple, robust, and free of ‛special cases.’  Note that for crack 
initiation in the interior of a body, at least two cracked edges are needed to realize a change in 
the mesh connectivity in two dimensions while at least three faces are needed in three 
dimensions.  For crack initiation on the boundary of a body, only one cracked edge is needed to 
realize a change in the mesh connectivity in two dimensions while at least two faces are needed 
in three dimensions.   
 
By its nature, pervasive failure involves a large amount of self-contact.  It is thus essential to 
have a simple and robust contact algorithm, free of ‛special cases.’  To avoid any constraints on 
surface topology that is typical of master/slave contact algorithms, a simple penalty approach is 
adopted here.  Each polyhedral element on the instantaneous surface of the domain is treated 
independently and checked for mutual penetration as in the discrete element method [43].  Let C 
represent the set of elements on the instantaneous surface of the domain.  At the start of the 
simulation C is initialized with all elements on the surface of the reference domain.  As the 
simulation progresses and new crack surfaces nucleate, elements previously on the interior that 
are now on the boundary are added to C.  Thus, the size of C is monotonically increasing during 
the simulation.  In the contact search phase the elements in the set C are spatially sorted onto an 
overlaid rectangular grid based upon minimal bounding boxes.  All element pairs that are ‛close’ 
are then checked for mutual penetration.  If penetration is detected, a penalty force based on both 
the penetrating velocity and penetration is applied following Heinstein [44].  The velocity based 
penalty parameter was chosen to obtain ‛plastic’ impact conditions.  The displacement based 
penalty parameter was chosen to be as small as possible yet still prevent gross penetration under 
quiescent conditions, recognizing the fact that the critical time step can be adversely affected by 
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too large a value.  The use of spatial sorting is very efficient.  Since there are no comparisons 
required between elements to populate the overlay grid, the sorting process is order N complexity 
where N is the number of elements in the contact set C.  If the cell size of the overlay grid is 
taken to be the characteristic element size, each grid cell is guaranteed to have only a few 
elements in each cell due to the interpenetration constraint.   
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5. LIMITS OF PREDICTABILITY AND CONVERGENCE 
 
An overriding goal in computational mechanics is to be ‘predictive.’  However, in the field of 
nonlinear dynamics it is now well known that there exist many deterministic systems that are 
inherently unpredictable1 beyond a certain critical time, the so called predictability horizon [45, 
65].  A common example is provided by the game of billiards in which a ball is given an initial 
velocity and trajectory with the goal of striking a series of balls arrayed on a table.  Due to 
extreme sensitivity in initial conditions it is virtually impossible to strike more than three or four 
balls in succession.  Such problems exhibit an exponential growth in time of small variations in 
the initial conditions and therefore possess an inherent predictability limit in time [45].  To see 
this let x(t) represent a trajectory in phase space (a solution for a given set of initial conditions) 
for a dynamical system.  Let x(t) + δ(t) represent a slightly different trajectory in which the initial 
conditions are varied by a very small amount δ0.  The difference in the two trajectories δ(t) can 
be described by the relation  
 

tet λ
0~)( δδ                         (17) 

 
where λ is the Liapunov exponent.  If λ is positive then the predictability horizon is given 
by [45] 
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λ 0
horizon ln1~

δ
aOt                       (18) 

 
where a represents an acceptable accuracy with respect to the ‘true’ trajectory x(t) and a > ||δ0||.  
The logarithmic dependence on ||δ0|| defeats any hope of long term system predictability.  For 
example suppose an acceptable accuracy in the model prediction is 10% (a = 10−1) and the 
precision in the initial conditions is ||δ0|| = 10−3.  From Eq. (18), thorizon ≈ 2(ln10)/λ.  If the 
precision in the initial conditions is increased to 10−6 then thorizon ≈ 5(ln10)/λ.  Thus, increasing 
the precision in the initial conditions by three orders of magnitude only increases the 
predictability horizon by a factor of 2.5.  For linear systems the predictability horizon is infinite.  
For stochastic systems (nondeterministic) the predictability horizon is zero.   
 
Sensitivity to initial conditions is one necessary condition for chaos [45].  Chaotic behavior is 
actually quite prevalent in mechanical systems that undergo intermittent impact [66], for 
example a bouncing ball on a vibrating table [67].  Due to the extensive interactions among 
advancing cracks and ubiquitous self contact-impact, pervasive failure problems are extremely 
sensitive to initial conditions (in addition to system parameters) as well and thus exhibit a finite 
predictability horizon.  This will be demonstrated in the examples given in Sections 6 and 7.  
However, unlike fully chaotic dynamical systems, pervasive failure processes are of finite 
duration and thus experience only short-term ‘transient chaos.’  Also, certain quantities of 
interest may be more predictable than others.  Global quantities such as dissipated energy, depth 
                                                 
1 Here, a dynamical system is considered predictable if given a specified initial state of the system to relative 
accuracy ε the state of the system at a later time can be specified to within an accuracy of at least order ε. 
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of penetration, and the ballistic limit are expected to be more predictable than local quantities 
such as fracture paths. 
 
Beyond the predictability horizon it is more appropriate to describe the dynamic system behavior 
using statistical theory even though the governing equations are completely deterministic.  For a 
dynamical system exhibiting long-term chaotic behavior the statistical properties can be obtained 
by merely sampling one simulation over a long time interval.  For pervasive failure processes 
exhibiting short-term transient chaos the statistical properties of the system can be obtained using 
an ensemble of simulations that are ‘seeded’ with small initial random variations in initial 
conditions or system parameters such as geometric imperfections and material properties.  
Furthermore, due to the transient chaotic behavior, conventional definitions of convergence with 
respect to mesh refinement are no longer applicable beyond the predictability horizon.  Instead, 
more general notions of convergence are necessary, ones based on statistical theory or measure 
theory in analysis.  The following three definitions of convergence are adapted from statistical 
theory [46] for the particular case of convergence with respect to mesh refinement: convergence 
in distribution, convergence in probability, convergence in r-th mean.  They are given in order of 
increasing ‘strength’ in the sense that if a sequence of probability distributions converge in 
probability then it also converges in distribution, and if a sequence of probability distributions 
converge in r-th mean then in also converges in probability [46].  Let Ph(q) represent the 
probability distribution of a quantity of interest q at a specific time during a pervasive failure 
simulation for a given mesh resolution h.  Let Fh be the cumulative distribution function of Ph.  
Convergence in distribution is defined as 
 

)()(lim
0

qq FFhh
=

→
                       (19) 

 
For example suppose that the quantity of interest q is the maximum crack length, a scalar.  For a 
given mesh resolution h the probability distribution Ph(l) represents the probability that the 
maximum crack length is l.  The probability that the maximum crack length is less than L is 
given by Fh(L).  For convergence in distribution the sequence Fh(L) must converge for each 
crack length L.  Convergence in probability is defined as 
 

( ) 0)()(Prlim
0

=>−
→

εqq PPhh
                    (20) 

 
for every ε > 0.  Here Pr(Ph(q) − P(q) > ε) represents the probability that Ph(q) is outside a 
tolerance ε of P(q).  Convergence in the r-th mean (r ≥ 1) is defined as 
 

( ) 0)()(lim
0

=−
→

r
hh

PPE qq                     (21) 

 
where E represents the expected value.  For r = 1 this represents convergence in mean, and for 
r = 2 this is convergence in mean square.  Note that the quantity of interest q may itself be a 
probability distribution, e.g. a fragment mass distribution, or a moment of a probability 
distribution such as the mean fragment mass.  Also note that the above definition of convergence 
in mean is fundamentally different than convergence of the mean.   
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For a given pervasive failure problem a computational demonstration of convergence in these 
measures could necessitate thousands of simulations at each level of mesh refinement.  Such 
Monte Carlo analyses would be difficult for large scale three-dimensional problems.  The 
situation is further complicated by the fact that the use of interelement cohesive based finite 
element simulations is predicated on a mesh resolution that is finer than the cohesive zone size.  
For many material systems, such as brittle ceramics, the cohesive zone size is relatively small 
and can be computationally expensive to resolve.  Recently, Molinari [68] has performed a 
detailed investigation into the convergence behavior of the total dissipated cohesive energy for a 
fragmenting ceramic ring in a one dimensional setting using a random mesh.  Extremely fine 
meshes were needed to demonstrate convergence in the mean value.  Resolving a full probability 
distribution would be even more difficult.  In the following pervasive failure example only a 
small ensemble of simulations are performed with the modest goal of merely highlighting the 
large variation in results and extreme sensitivity to initial conditions.  Future work will focus on 
quantitative demonstrations of convergence using the statistical measures given in Eqs. (19−21). 
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6. EXAMPLE 
 
A two-dimensional explicit dynamics program implementing the RCP Voronoi methodology 
with dynamic mesh connectivity was written using the C++ programming language.  The object-
oriented functionality available in C++ facilitated the implementation.  The C++ Standard 
Template Library, providing the set, vector, list, and map dynamic data structures was 
particularly useful [47].  A three dimensional parallel implementation seems challenging due to 
the extensive modifications in the mesh topology and the necessary processor load rebalancing.  
It is envisioned that the project phdMesh (parallel, heterogeneous, and dynamic unstructured 
meshes) [48] will provide a convenient platform for developing a 3D parallel implementation.   
 
For an example consider a low-strength concrete column (0.3 m by 1.83 m) impacting a rigid 
plane at a striking velocity of 7.6 m/s and 45° angle of obliquity as shown in Figure 10.  The 
column is idealized as a two-dimensional plane strain structure composed of a linear elastic 
material (Young’s modulus E = 28.3 GPa, Poisson’s ratio ν = 0.2, density = 2.25 g/cm3) with a 
Mohr-Coulomb localization criterion with a tensile cutoff σo as shown in Figure 11.  The Mohr-
Coulomb failure criterion is given by  
 

σμτ −= c                          (22) 
 
where τ is the limiting shear stress on a plane, σ is the normal stress on the same plane, c is the 
cohesion, and μ is the coefficient of internal friction.  For this example, c = σo = 3.7 MPa and 
μ = 0.75.  The cohesive traction model follows that of Camacho and Ortiz [15].  The cohesive 
parameters presented in reference [50] for mortar are used with an overall fracture energy G = 
57 J/m2.  An estimate of the cohesive zone length can be obtained using an equivalent linear 
elastic fracture mechanics model in which the length of the cohesive zone L is given by L = k lch 
where lch = E'G/σo

2 is Hillerborg’s characteristic size, E' = E/(1−ν2), and k is a dimensionless 
constant in the range 2 to 5 [49, 69].  Using the above material values gives lch = 0.12 m and a 
minimum value for L of 0.25 m.  This value for the cohesive zone length is roughly equal to the 
thickness of the concrete column in the present example.  In order to detect if the localization 
criterion (Eq. 22) has been obtained at an interelement face, the stress field is interpolated from 
the integration points of the two attached elements.  Once the localization criterion is met at an 
interelement face, the connectivity of the finite element mesh is updated as described in 
Section 4, and the cohesive traction is invoked.  The normal tractions are taken to be zero under 
over-closure.  The contact algorithm is used to prevent interelement penetration.   
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Figure 10.  A low strength concrete column striking a rigid wall at a 45 degree angle. 
 

 
 

Figure 11.  Mohr-Coulomb failure surface in shear (τ) normal-stress (σ) space, with 
cohesion c, tensile cutoff σo, and internal friction μ. 

 
For the results and discussion to follow, the ith realization of a RCP Voronoi tessellation with a 
characteristic cell size h will be denoted Ri

h.  Four characteristic cell sizes will be considered, 
8.0, 4.0, 2.0, and 1.0, with h = 1.0 corresponding to a physical dimension of 0.635 cm.  Three 
realizations of the RCP Voronoi mesh are shown in Figure 12 for h = 8.0, h = 4.0, and h = 2.0.  
Figure 13 shows a series of snapshots in time of the concrete column during the impact event 
using the Ri

2.0.  mesh.  In addition to the boundary, fracture surfaces whose cohesive tractions 
have fully softened are also shown.  There is extensive fragmentation at the impact corner.  Note 
the bending induced fracture at the midsection involving crack coalescence and branching.  
There is additional fragmentation after the column rotates and the rear section strikes the rigid 
plane at approximately 200 ms.  The fragmentation process is essentially complete by 300 ms.  
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To illustrate the extreme sensitivity to initial conditions, the simulation was rerun with an initial 
striking angle of 44.99°, only a 0.02% difference.  The simulation results are shown in Figure 14.  
Note that the fracture and fragmentation results are qualitatively similar but distinctly different 
with respect to specific cracks and resulting fragment sizes.  As described in Section 5, due to the 
extreme sensitivity in initial conditions of this problem it is expected to be very difficult to 
demonstrate mesh convergence in a classical sense. 
 

 
 
Figure 12.  Randomly close packed Voronoi realizations for three different characteristic 

cell sizes, h = 8.0, h = 4.0, and h = 2.0.  Three realizations are shown for each 
characteristic cell size. 
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Figure 13.  Deformed state and crack surfaces of the concrete column at a number of 
instances in time after impact with an impact angle of 45.00° (  mesh).  Only cracks 
that have fully softened (no cohesive tractions) are shown.  Impact times are 2, 10, 30, 

150, and 230 ms. 
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Figure 14.  Deformed state and crack surfaces of the concrete column at a number of 
instances in time after impact with an impact angle of 49.99° (  mesh).  Only cracks 
that have fully softened (no cohesive tractions) are shown.  Impact times are 2, 10, 30, 

150, and 230 ms. 
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There are a number of physical sources of variability that could be included in the initial 
conditions and model parameters to induce a distribution in the physical response.  One 
important source of variability is the material properties.  Ideally, a correlated random field 
representation of the material properties, including localization, would be included in the 
analysis.  If the body is idealized as homogenous, then the random orientation of the RCP 
Voronoi structure provides in effect a non-physically based variation in the localization 
properties of the material.  Performing multiple simulations with different RCP Voronoi 
realizations will result in a distribution of any nonconserved quantity.  Since in general the 
distribution will not be uniform, each specific simulation produces a different value.  Thus, only 
the distribution itself can be regarded as ‛mesh independent’.  Suppose the engineering quantity 
of interest is the cumulative distribution of fragment mass fraction.  The cumulative distribution 
of fragment size at the simulation time of 300 ms is shown in Figure 15 for twelve RCP Voronoi 
realizations Ri

2.0,  using homogeneous material properties.  Note that each 
distribution is distinctly different.  The maximum fragment size for a given simulation may be 
identified by the last ‛step’ in the curve.  To demonstrate the sensitivity to material property 
variations, the impact simulation for the Ri

2.0 mesh was performed with a ±5% uniform variation 
in elastic modulus and the internal friction μ.  Twelve realizations of material properties were 
produced.  The resulting cumulative distributions in fragment mass fraction are shown in 

}12,,3,2,1{ K∈i

Figure 
16.  The cumulative distribution for the homogenous case is also given.  Note that the variability 
between the cumulative distributions is similar to the variability for the multiple mesh 
realizations but with homogenous material properties.   
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Figure 15.  Cumulative distribution of the fragment mass-fraction at a simulation time of 

300 ms for the ,  RCP Voronoi mesh family with homogeneous 
material properties.  The mean of the maximum-fragment mass-fraction is denoted by the 

arrow. 
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Figure 16.  Cumulative distribution of the fragment mass-fraction at a simulation time of 
300 ms using the  mesh with twelve material realizations of a ± 5% uniform variation 

on elastic modulus and Mohr-Coulomb failure surface.  The homogenous material case is 
given for comparison. 
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The corresponding cumulative distributions for the Ri

8.0, Ri
4.0, and Ri

1.0 mesh families using 
homogeneous material properties are shown in Figure 17, Figure 18, and Figure 19, respectively.  
In addition, the maximum fragment size for each mesh realization and refinement level is given 
in Figure 20.  The convergence of the distribution of cumulative distributions is not apparent, 
although twelve realizations is a very small sample size for what is expected to be a complex 
statistical distribution for fragment size.  As noted in Section 5 a definitive demonstration of 
convergence could necessitate thousands of such simulations. 
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Figure 17.  Cumulative distribution of the fragment mass-fraction at a simulation time of 

300 ms for the ,  RCP Voronoi mesh family with homogeneous 
material properties.  The mean of the maximum-fragment mass-fraction is denoted by the 

arrow. 
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Figure 18.  Cumulative distribution of the fragment mass-fraction at a simulation time of 

300 ms for the ,  RCP Voronoi mesh family with homogeneous 
material properties.  The mean of the maximum-fragment mass-fraction is denoted by the 

arrow. 
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Figure 19.  Cumulative distribution of the fragment mass-fraction at a simulation time of 

300 ms for the ,  RCP Voronoi mesh family with homogeneous 
material properties.  The mean of the maximum-fragment mass-fraction is denoted by the 

arrow. 
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Figure 20.  The maximum fragment size for twelve RCP Voronoi mesh realizations at four 

mesh resolutions , , , and  with homogeneous material properties.  For 
each mesh resolution the mean of the maximum fragment mass-fraction is also given. 
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An additional consideration arises with the use of bulk constitutive models that include internal 
state variables for representing continuum damage from microcracking.  The presented 
computational methodology provides an explicit representation of macroscopic cracks.  
Conversely, continuum damage mechanics provides an implicit homogenized representation of 
microcracks.  As an RCP Voronoi mesh is refined to smaller scales the question of self-
consistency between the explicit macroscopic representation of cracks and the implicit 
homogenized representation comes into question.  This notion of self-consistency and scale 
dependence is a central theme in fractal geometry descriptions of materials [51−54], and is 
important for understanding the size effect in quasi-brittle materials [49, 55].  
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7. DISCRETE FRACTURE ABSTRACTIONS 
 
A few advantages of representing fracture surfaces by discrete facets were discussed in 
Section 1.  A discrete fracture representation also enables additional levels of mathematical 
abstraction that can be useful, for example, in comparing multiple simulations using the same 
RCP Voronoi mesh.  In this section a few of these abstractions are proposed and briefly 
demonstrated. 
 
7.1 fracture state space 
 
Consider a given RCP Voronoi mesh with N internal faces.  At a high level of abstraction the 
fracture state of a given face may be described as either uncracked (0) or cracked (1).  If the set 
of all faces is enumerated from 1 to N, the fracture state of the entire body is described by the 
sequence (a1, a2, a3, . . ., aN) where each ai is either 0 or 1.  The set of all such binary sequences 
forms a fracture state space denoted by Eh.  The size of Eh is finite and is given by 2N.  While 
finite, the space is quite large.  (For example, the Ri

8.0 mesh shown in Figure 12 has 490 internal 
edges, and the size of Eh is 2490 ≅ 10148.  The Ri

4.0 mesh has 1847 internal edges, and the size of 
Eh is approximately 21847 ≅ 10556.)  Now let Xi represent a crack state at a given time ti in an 
explicit dynamics simulation.  The sequence (Xi) i ≥ 0 , defines the fracture history or process.  
Many other fracture state spaces could be defined as well.  For example, if the fracture state is 
described by the sequence (a1, a2, a3, . . ., aN) where each ai is now a real number representing 
the crack face opening displacement (cfod) of face i, the set of all such sequences forms a new 
fracture state space denoted by Fh

. 
 
A metric space [56] is a set X and a distance function d defined on X, such that for all x, y, z ∈ X, 
the following four axioms hold:  (1) d is real valued, finite, and nonnegative, (2) d(x, y) = 0  if 
and only if x = y, (3) d(x, y) = d(y, x), and (4) d(x, y) ≤ d(x, z) + d(z, y) .  For the fracture state 
space Eh one possible distance function is the Hamming distance [57] used in coding and 
information theory.  In this case the Hamming distance function dH(x, y) , x,y ∈ Eh is defined as 
the number of faces that have different fracture states (0 or 1).  Armed with this metric the 
distance between two fracture states can be calculated either at different times during one 
simulation or between two distinct simulations using a specific RCP Voronoi mesh.  Note that 
for a specific simulation the Hamming distance between a fracture state at time tn and the initial 
crack state t0 is a monotonically increasing function of time.  For the fracture state space Fh, one 
possible distance function is the sum of the absolute difference between the crack face opening 
displacements at two states, x and y  
 

∑
=

−=
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ii yxyxd

1
cfod )(cfod)(cfod),(                  (23) 

 
Unlike the metric space (Eh, dH), the distance function dcfod in the metric space (Fh, dcfod) is not 
necessarily a monotonically increasing function in time due to crack closure.   
 
One application of a distance function between crack states is the quantification of the sensitivity 
of a pervasive failure process to initial conditions and system parameters.  For an example 
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similar to the one presented in Section 6, consider the impact of a concrete beam by a rigid 
projectile with a striking velocity of 20.0 m/s.  The length of the beam is 4.0 m and the thickness 
is 0.3 m.  The RCP Voronoi mesh has a characteristic length of 12 mm with a total of 
approximately 6000 elements and 16000 internal edges.  The results of the simulation are shown 
at the top of Figure 21 at a simulation time of 3.0 ms.  The remaining six cases are simulations 
using the same mesh and material parameters but with increasingly accurate values of the 
striking velocity from 20.1 m/s (a difference of 0.5 percent from the reference value) down to 
20.000001 m/s (a difference of 5x10−6 percent from the reference value).  Only in the last two 
cases are the outer structural cracks visually identical.  The distance function dH can be used to 
quantify the differences in the crack states.  Figure 22 gives the distance between each crack 
state and the reference as a function of the explicit dynamic simulation step.  The last time step 
shown (6400) corresponds to the simulation time of 3.0 ms used in Figure 21.  In all cases the 
distance diverges exponentially (as described by Eq. (17)) and then saturates.  An accuracy of 
5x10−9 percent in the initial striking velocity is needed to achieve an identical final crack state. 
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Figure 21.  Crack states resulting from a rigid projectile impacting a concrete column.  
Each image represents the results from a different simulation using the same RCP 
Voronoi mesh but with a slightly different striking velocity.  The time is 3.0 ms after 
impact which corresponds to the final simulation step (6400) reported in Figure 22. 
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Figure 22.  Distance between crack states resulting from a rigid projectile impacting a 
concrete column (see Figure 21) as a function of simulation step.  Each curve represents 

a different simulation using the same RCP Voronoi mesh but with a slightly different 
striking velocity.  Distances are with respect to the reference simulation shown at the top 
of Figure 21 (striking velocity = 20.0 m/s).  The final simulation step (6400) corresponds 

to the time of 3.0 ms used in Figure 21. 
 
7.2 graph theory and percolation 
 
The discrete representation of fracture surfaces is ideally suited for study by graph and network 
theory [58].  A graph G is a pair of sets G = {V,E}, where V is a set of N vertices or nodes 
V1, V2, ... , VN , and E is a set of edges or links that connect the vertices of V.  (The nodes and 
edges of the graph should not be confused with the nodes and edges of the finite element mesh.)  
One possible graph representation of a fracture state X is to let the nodes of the graph represent 
the Voronoi cells and let the edges of the graph represent whether or not a crack exists between 
two adjacent Voronoi cells.  In this case, the nodes and edges of the graph are simply nodes and 
edges of the dual Delaunay triangulation described in Section 2.  Another possible graph 
representation is to let the nodes of the graph represent a crack face pair (reference state) and let 
the edges of the graph represent an adjacency with another crack face pair.  Once a graph 
structure of the fracture network is defined, the topology and statistical mechanics of the 
structure and its evolution could be studied using tools of graph theory including clustering, 
graph spectra, trees, and cycles [58].   
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Finally, the connectedness of a domain and its bifurcation through fragmentation is of central 
importance in percolation theory.  Percolation theory has been a valuable tool for understanding 
certain critical phenomena such as phase changes and localization [59, 60].  A few studies of the 
application of percolation theory to fragmentation have been performed by Englman [61] using 
square lattices, Sokolov [62] using a regular triangular array of springs, and Astrom [63] using 
an irregular beam lattice.  Dienes [64] studied the cluster statistics and percolation threshold of a 
network of cracks using a geometry based statistical crack mechanics.  The application of 
percolation theory to characterize pervasive failure simulated using a continuum mechanics 
based discrete crack representation could be a fruitful avenue for further research. 
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8.  VALIDATION APPROACH 
 
The proposed computational approach for modeling pervasive fracture based on only allowing 
fractures to nucleate at interelement faces is considered to be most applicable to the modeling of 
fracture processes in quasi-brittle materials such as concrete in which the crack paths are 
tortuous, jagged, and not well idealized as smooth.  An idealization of these crack as smooth is a 
stark contrast to a more realistic fractal representation [52, 53].  The RCP Voronoi approach has 
the potential to ‘converge’ to such a fractal representation.  Also, as discussed in Section 6, 
quasi-brittle materials have a relatively large cohesive zone size.  For these reasons, along with 
the importance of modeling failure processes in concrete structures, concrete was chosen to be 
the material of interest for an initial validation step.  Also, quasi-static single crack growth will 
be studied for the initial validation step.  This much simplified regime of fracture allows for a 
more in depth study of the statistical notions of convergence proposed in Section 5.   
 
A common concrete fracture experiment is the displacement controlled three-point-bend test 
shown schematically in Figure 23 [69,71,72].  Numerous variants of this test exist including 
specimens with preexisting notches and variations on the constraints and loading.  For the initial 
validation step, the quasi-static displacement controlled three-point-bend test containing a 
preexisting edge notch at the midsection will be used [71].  Several nominal simulations of this 
test were performed as shown in Figure 24.  These initial simulations demonstrated the inherent 
difficulty in simulating a quasi-static process using explicit dynamics.  For typical specimen 
sizes on the order of one meter and mesh sizes on the order of centimeters, the critical time step 
is on the order of microseconds.  In order to maintain a quasi-static loading rate, physical time is 
on the order of seconds resulting in millions of time steps.  A number of numerical techniques 
were incorporated in an attempt to increase the critical time step.  Graded meshes were used as 
shown in Figure 24(a) along with nodal mass scaling.  The presence of high-frequency 
oscillations in an explicit-dynamic simulation makes convergence calculations difficult in all but 
a ‘view-graph norm.’  Artificial damping was used to help control high-frequency vibrations, but 
this was found to be only marginally effective. 
 

displacement control 

 
 

Figure 23.  Schematic of a displacement controlled three-point bend test. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 24.  Simulation of a displacement controlled three-point bend experiment (a) RCP 

Voronoi mesh graded near the center with contoured max-principal stress field (b-d) 
Three separate simulations of crack growth using three different RCP Voronoi meshes 

with identical loading conditions. 
 
A number of cases and comparisons are of interest.  The following list of cases is given in order 
of increasing generality: 
 

1. Straight crack idealization, symmetric mesh about midplane, preexisting cohesive 
interface elements. 

2. Straight crack idealization, symmetric mesh about midplane, dynamic mesh connectivity, 
new cracks are restricted to the straight crack trajectory. 
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3. Nonsymmetric mesh, dynamic mesh connectivity, contiguous cracking only. 
4. Nonsymmetric mesh, dynamic mesh connectivity, arbitrary cracking. 

 
In case 3 ‘contiguous cracking’ constrains the interelement faces at which new cracks can form 
to be only those faces that are attached to an existing crack.  In case 4 ‘arbitrary cracking’ 
connotes unconstrained fracture in that a crack can form at any interelement face.  For each of 
these cases, the load versus displacement relationships can be compared and assessed for 
convergence with mesh refinement.  As discussed in Section 5, it is envisioned that only the 
distribution of crack paths and load-displacement responses will be shown to be convergent.  
Furthermore, only the distribution of crack paths itself can be viewed as mesh independent. 
 
Results from case 2 exhibited an immediate difficulty.  The dynamic change in connectivity of 
the structure resulted in a relatively large artificial vibration in the structure.  In a load vs. 
displacement plot, the vibration was roughly the same magnitude as the peak load, thus polluting 
the results.  In high-energy impacts, this artificially induced noise is relatively small.  However, 
in a quasi-static analysis using a dynamic solver, the artificially induced vibration is intolerable.  
For specific boundary-value problems, localization parameters can be adjusted to ameliorate this 
behavior, but there doesn’t seem to be a robust method for general dynamic problems under all 
regimes of stress states (compression and tension).  The problem is fundamentally due to the 
discontinuity of tractions at the element faces and the inability to recover interelement tractions 
that are dynamically consistent with the nodal forces.  Methods exist for recovering interface 
tractions from nodal forces [74] but these do not completely fix the problem.  An alternative 
approach is presented in the next section. 
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9. DISCONTINUOUS-GALERKIN FORMULATION  
 
In the computational approach based on a dynamic change in mesh connectivity, the 
displacement field was continuous until localization and material failure was detected at an 
element face whereupon the mesh connectivity was modified to represent the new localization 
surface.  While this approach is computationally efficient, there is not a unique relationship 
between interface tractions, nodal forces, and element stresses.  Inevitably, when the mesh 
connectivity is modified, there is an inconsistency between the previous nodal force state and the 
new nodal force state from the next time step.  This results in a nonsmooth system response that 
can be severe in quasi-static problems as discussed in the previous section.  (Note that this effect 
is present any method that modifies mesh connectivity in a time dependent problem.  Not just 
fracture problems.) 
 
One promising alternative is a discontinuous Galerkin (DG) approach in which the interface 
tractions are an integral part of the variational formulation.  DG methods have found wide 
applicability in a variety of problems including fluid dynamics and incompressible elasticity 
[73].  Herein, a type of DG approach is proposed and is currently under study.  The method is 
iterative in nature and is based on a variant of Nitsche’s method used for solving contact 
problems [76].  The iterative approach is analogous to an augmented-Lagrangian approach for 
enforcing contact constraints [75].  The proposed method has been demonstrated to be 
convergent for the standard beam-bending benchmark problem used in Section 3.  Work is 
ongoing to demonstrate the use of this method with a cohesive law and the validation approach 
discussed in the previous section.   
 
For simplicity, the following discussion is restricted to small strains and displacements.  First, a 
Lagrange multiplier based discontinuous Galerkin formulation will be discussed.  Following this 
discussion, a discontinuous Galerkin formulation based on an iterative form of Nitsche’s method 
will be presented. 
 
9.1 Lagrange Multiplier based Discontinuous Galerkin 
 
A simple discontinuous Galerkin formulation can be obtained by disconnecting all elements and 
enforcing compatibility with Lagrange multipliers at the element interfaces.  The finite elements 
do not have to be compatible.  The Lagrange multipliers represent the interelement tractions.  To 
avoid the common numerical difficulties associated with Lagrange multipliers, an augmented 
formulation with a penalty stiffness can be used.  The total potential energy Π is given by  
 

∫∫
ΓΓ

Γ•+Γ•+Π=Π
intint

p
bulk

2
1)( dkhfd gggλ                (24) 

 
where Πbulk represents the total potential energy of the continuum, Γint represents the 
interelement surfaces, λ is the vector Lagrange multiplier, g is the interface gap vector, kp is the 
penalty stiffness parameter, and f(h) is a scalar function of the mesh size h.  The function f(h) is 
included because the interelement surface area increases with mesh refinement and is thus not 
intrinsic to the boundary value problem itself.  The functional form of f(h) is currently under 
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study but is expected to be dependent upon the number of spatial dimensions.  In the simulations 
to follow a form of f(h) = 1/h is used.  Taking a first variation gives [75] 
 

∫∫
ΓΓ

Γδ•+Γδ•+Πδ=Πδ
intint

p
bulk )( dkhfd gggλ                (25) 

 
where λ is taken to be a constant updated during iteration such that 
 

gλλ p
ii k+=+1                         (26) 

 
Note that both the Lagrange multiplier term and the penalty term in Eq. (24) are zero for the 
exact solution (g = 0).  This approach was implemented and shown to give equivalent results to a 
standard continuous Galerkin approach.  In theory this approach could be used to incorporate a 
cohesive traction law directly in the formulation.  However, the difficulty with this approach is 
that the Lagrange multipliers are typically not consistent with the element stresses and can even 
be oscillatory in space, thus giving nonphysical results.  This approach is modified in the next 
section by borrowing an approach from Nitsche’s method which has been used successfully in 
contact problems [76].  
 
9.2 Nitsche based Discontinuous Galerkin 
 
In Nitsche’s method [76] the Lagrange multiplier in Eq. (24) is replaced by the average of the 
interelement traction vector T obtained from the stress field of the attached elements as shown in 
Figure 25.  Eq. (24) becomes 
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In variational form 
 

∫∫
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2
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where the traction vector T is taken to be a constant updated during iteration by the relation 
 

nT •σ=+ ii 1                           (29) 

 
Note that both interface terms in Eq. (27) are zero for the exact solution (g = 0).  Also, note that 
the penalty term is not used to update the interface tractions in Eq. (29) as in Eq. (26).  If the 
iterative scheme of Eqs. (28) and (29) converges, then there is a natural consistency between the 
interface tractions and elements stress field.   
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Figure 25.  Schematic illustrating the interelement tractions obtained from the adjacent 

mean element stress. 
 
This method was implemented for a perfect interface.  An average stress state was used in each 
element and thus a uniform interface traction.  The method was shown to pass the patch test and 
converge on the beam-bending verification problem of Section 3.  Figure 26 gives a comparison 
of the L2 norm of the displacement error for the beam-bending verification problem using both a 
standard continuous Galerkin formulation and a discontinuous Galerkin formulation.  Ten RCP 
Voronoi mesh realizations were used at each refinement level.  Results for the discontinuous 
Galerkin formulation are given for several values of the penalty parameter kp.  The convergence 
rate is also given and is shown to increase with increase penalty stiffness.   
 
With these promising results, current research is focusing on incorporating a softening traction-
separation law into the formulation.  Once this task is complete, work will focus on completing 
the validation tasks outlined in Section 8. 
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Figure 26.  Comparison of the L2 norm of the displacement error for the beam-bending 
verification problem using both a standard continuous Galerkin formulation and a 

discontinuous Galerkin formulation.  Ten RCP Voronoi mesh realizations were used at 
each refinement level where haverage represents the average cell size of the RCP Voronoi 

mesh.  Results for the discontinuous Galerkin formulation are given for several values of 
the penalty parameter kp.  The convergence rate is also given.  (plane stress conditions, 

Poisson’s ratio = 0.3, beam aspect ratio = 4.0). 
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10.  SUMMARY 
 
A pure Lagrangian computational method based on randomly close-packed Voronoi tessellations 
is proposed as a rational approach for simulating the pervasive fracture and fragmentation of 
materials and structures.  Each Voronoi cell is formulated as a finite element using the 
reproducing kernel method.  Fracture surfaces are allowed to nucleate only at the intercell faces.  
The randomly seeded Voronoi cells provide an unbiased network for representing cracks.  In this 
initial study two approaches for allowing the new surfaces to initiate were studied:  (1) dynamic 
mesh connectivity and the instantaneous insertion of a cohesive traction when localization is 
detected, and (2) a discontinuous Galerkin approach in which the interelement tractions are an 
integral part of the variational formulation but only become active once localization is detected. 
 
A number of validation ‘first steps’ were discussed including the simulation of quasi-static three-
point bend fracture experiments of concrete.  It was found that in this case, the dynamic insertion 
process can induce relatively large nonphysical vibrations in the structure.  Based on this result, a 
new discontinuous Galerkin approach was proposed based on an iterative form of Nitsche’s 
method used in contact problems.   
 
A number of challenges exist with the approach of only allowing cracks to nucleate and 
propagate at interelement surfaces:  (1) artificial shear-induced dilation, (2) consistency between 
the localization criteria, bulk constitutive models, and softening relationships, and (3) statistical 
measures of convergence.  The mesh based shear-induced dilation could be ameliorated by the 
use of vertex-smoothing in the sliding-contact algorithm. 
 
Beyond the application to weapons effects on structures, another important application of the 
proposed method is geomechanics.  The RCP mesh with interelement fractures provides a natural 
basis for an ‘explicit fracture network’ that can be used for porous flow modeling.  Ultimately, it 
could be one component in a unified coupled thermal-mechanical-hydro formulation.  This 
capability would be particularly useful for the simulation of hydraulic fracturing in geothermal 
reservoirs, containment issues in CO2 sequestration, and nuclear waste isolation. 
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