Influence of Dust Composition on Cloud Droplet Formation

PDF Version Also Available for Download.

Description

Previous studies suggest that interactions between dust particles and clouds are significant; yet the conditions where dust particles can serve as cloud condensation nuclei (CCN) are uncertain. Since major dust components are insoluble, the CCN activity of dust strongly depends on the presence of minor components. However, many minor components measured in dust particles are overlooked in cloud modeling studies. Some of these compounds are believed to be products of heterogeneous reactions involving carbonates. In this study, we calculate Kohler curves (modified for slightly soluble substances) for dust particles containing small amounts of K{sup +}, Mg{sup 2+}, or Ca{sup 2+} ... continued below

Physical Description

PDF-file: 41 pages; size: 0.7 Mbytes

Creation Information

Kelly, J T; Chuang, C C & Wexler, A S August 21, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Previous studies suggest that interactions between dust particles and clouds are significant; yet the conditions where dust particles can serve as cloud condensation nuclei (CCN) are uncertain. Since major dust components are insoluble, the CCN activity of dust strongly depends on the presence of minor components. However, many minor components measured in dust particles are overlooked in cloud modeling studies. Some of these compounds are believed to be products of heterogeneous reactions involving carbonates. In this study, we calculate Kohler curves (modified for slightly soluble substances) for dust particles containing small amounts of K{sup +}, Mg{sup 2+}, or Ca{sup 2+} compounds to estimate the conditions where reacted and unreacted dust can activate. We also use an adiabatic parcel model to evaluate the influence of dust particles on cloud properties via water competition. Based on their bulk solubilities, K{sup +} compounds, MgSO{sub 4} x 7H{sub 2}O, Mg(NO{sub 3}){sub 2} x 6H{sub 2}O, and Ca(NO{sub 3}){sub 2} x 4H{sub 2}O are classified as highly soluble substances, which enable activation of fine dust. Slightly soluble gypsum and MgSO{sub 3} x 6H{sub 2}O, which may form via heterogeneous reactions involving carbonates, enable activation of particles with diameters between about 0.6 and 2 mm under some conditions. Dust particles > 2 mm often activate regardless of their composition. Only under very specialized conditions does the addition of a dust distribution into a rising parcel containing fine (NH{sub 4}){sub 2}SO{sub 4} particles significantly reduce the total number of activated particles via water competition. Effects of dust on cloud saturation and droplet number via water competition are generally smaller than those reported previously for sea salt. Large numbers of fine dust CCN can significantly enhance the number of activated particles under certain conditions. Improved representations of dust mineralogy and reactions in global aerosol models could improve predictions of the effects of aerosol on climate.

Physical Description

PDF-file: 41 pages; size: 0.7 Mbytes

Source

  • Journal Name: Atmospheric Environment, vol. 41, no. 14, May 15, 2007, pp. 2904-291; Journal Volume: 41; Journal Issue: 14

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-223884
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 936703
  • Archival Resource Key: ark:/67531/metadc894399

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 21, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 5, 2016, 8:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kelly, J T; Chuang, C C & Wexler, A S. Influence of Dust Composition on Cloud Droplet Formation, article, August 21, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc894399/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.