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  Abstract 

 A  spheromak equilibrium with zero edge current is shown to be stable to both 

ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected 

spheromaks. This stable equilibrium differs from the stable Taylor state in that the current 

density j falls to zero at the wall. Estimates indicate that this current profile could be 

sustained by non-inductive current drive at acceptable power levels. Stability is 

determined using the NIMROD code for linear stability analysis. Non-linear NIMROD 

calculations with non-inductive current drive could point the way to improved fusion 

reactors. 

 

1. Introduction 

 Spheromaks achieve toroidal-like plasma confinement, as in tokamaks, but 

without the toroidal field coils that define the size and cost of tokamaks. Building on 

earlier results in CTX [1], remarkably stable spheromak equilibria confining plasmas at 

electron temperatures up to 500 eV and peak electron β ≈  10 % have now been achieved 

in the SSPX experiment using helicity injection by electrostatic guns to create a plasma 

that then heats up as magnetic fluctuations die away during the slow decay of the current  

[2]. Due to magnetic relaxation, gun injection tends to produce a current density j and 

magnetic field strength B such that λ = µo(j| | /B) is roughly constant on closed flux 

surfaces, giving high resistive losses near the edge. Despite these losses, attractive steady 

state spheromak fusion reactors were thought to be possible for gun efficiencies ideally 

achievable [3]. Thus far, the required efficiencies have not been achieved in steady state, 

because of continuing magnetic turbulence as long as gun injection is required to sustain 

the plasma [4]. 
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Here we discuss an alternative approach based on newly discovered equilibria that 

are stable to the ideal MHD and tearing modes typically encountered with gun injection,  

even though for this state λ falls to zero at the walls with zero gun current and small 

resistive losses at the edge of the plasma. As with the familiar Taylor state with constant 

λ [5], stability requires flattening the λ profile, but only in the interior. This is not a 

natural state in the absence of instability, due to non-uniform resistivity that tends to 

create gradients in λ. However, such a profile could be sustained in steady state using 

neutral beams or other non-inductive current drive, with acceptable power requirements 

according to estimates presented here as motivation for future work.  

The main focus of this paper is linear stability against tearing modes. The stable 

equilibrium is discussed in Section 2. Stability calculations using the NIMROD code [6] 

are presented in Section 3. Estimates of current drive power required to maintain a stable 

state are presented in Section 4. Results are summarized in Section 5, with suggestions 

for future work on NIMROD to extend our work to the non-linear regime. 

  

2. Stable Equilibria with Zero Edge Current 

The flux averaged <j> for the Taylor state with constant λ, shown in Fig. 1, 

is dominated by a strong toroidal current near the magnetic axis and poloidal current 

about half this strength near the boundary. Thus, though the Taylor state is stable to 

tearing, <j> extends to the edge where temperatures are low and the power required to 

drive j is large.  

 To seek stable equilibria with smaller edge losses, we take: 

 

λ(ψ) =   λo[1 – (ψ/ψE) N]   ,   λ = 0 for 0 < ψ < ψE   (1)  

 

where ψ is the poloidal magnetic flux function with ψ = ψE at the plasma edge. The 

Grad-Shafranov equilibrium equation is solved using the Corsica code with SSPX flux 

conserver geometry including an electrostatic gun with poloidal field coils producing a 

bias flux ψE on  open field lines [7, 8]. Here the gun voltage generating current in SSPX 

is set equal to zero, represented in Eq. (1) by λ = 0 for 0 < ψ < ψE (taken positive), while j 

inside closed surfaces is assumed to be maintained by neutral beams  or other non-
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inductive current drive. As is discussed in Ref. [7], the actual inputs to Corsica are the 

plasma pressure p(ψ) and F(ψ) = RBφ, taken as dF/dψ = λ(ψ) → (µj⋅B/B2) at p = 0, and 

the total toroidal current relative to the bias flux that fixes λo. In Corsica, the hoop force 

is confined by toroidal image currents  in the flux conserver wall, whereas in steady state 

additional poloidal field coils would be required. No toroidal field coils are required.  

The shape of the current profile is controlled by N in Eq. (1). An example 

equilibrium for N = 6  is shown in Fig. 2 giving profiles for λ, j, q and the nominal small 

pressure p included in the calculation. Fig. 3 displays the closed flux surfaces where λ ≠ 

0. For numerical convenience, the quantities plotted in Figs. 1 and 2 are defined by: 

 

<λ> = µo(<j⋅B>/<B2>)      (2) 

 

<j> = (<j⋅B>/<B2>1/2)      (3) 

          

Note the flattened λ profile in Fig. 2. In Section 3, we will show that this state is 

stable to tearing, even though the current falls to zero at the edge, with interesting 

consequences for fusion energy applications, as discussed in Sections 4 and 5.  

 

3. Stability Analysis 

In SSPX, Taylor relaxation leads to a quasi-stable state with a relatively flat λ 

profile inside closed flux surfaces, but with a larger value of λ representing gun current 

on open field lines during helicity injection. Typically instabilities feeding helicity into 

the closed region are dominated by n = 1 kink modes due to this gun current. Tearing 

instability opens field lines in 3D, even when the 2D projection has the closed surfaces 

predicted by Taylor relaxation. It has been shown that allowing the gun current to fall 

below the threshold for instability causes flux closure in 3D, evidenced by high electron 

temperatures in SSPX [2]. This suggests that equilibria given by Eq. (1), which have no 

current on open field lines, might be sufficiently stable if also there are no internal modes 

inside the last closed surface (the separatrix) and if known ideal MHD tilt and shift 

external modes are stabilized. Stability of the equilibrium in Figure 2 to tilt and shift 

modes (n = 1) has been verified using the DCON code [9]. The tilt mode is stabilized by 
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the conducting wall of the flux conserver. In a steady state device, stabilizing the tilt 

mode would require active feedback, probably feasible. 

Verifying stability against tearing modes that can destroy flux surfaces requires 

further analysis.  The straightforward approach involves calculating the free energy 

parameter Δ′ which usually requires numerical computation. The existence of states with 

zero edge current that are stable to tearing and kink modes at zero pressure was suggested 

by Robinson’s earlier calculations of Δ′ for a linear diffuse pinch as a model of RFP’s 

[10]. Here we demonstrate linear stability for similar states in a spheromak, using 

NIMROD.  

The reader may ask, if theory predicts tearing-stable profiles, why both RFP’s and 

spheromak experiments have exhibited tearing of flux surfaces detrimental to good 

confinement. The main reason, as noted in the Introduction, is that stability requires 

flattening the λ profile in the interior, an unnatural state in the absence of instability due 

to non-uniform resistivity that tends to create gradients in λ. Hence profile control is 

required, as discussed in Sections 4 and 5 and now demonstrated in RFP experiments 

[11].  

 

A. Stability versus N: Analytical, Straight Cylinder Model 

That flattening the λ profile in the plasma interior is the key to stability against 

tearing was shown by Robinson’s calculations of Δ′ for the cylinder model of RFP’s, with 

several examples [10]. Before proceeding with the discussion of our NIMROD results, 

we first discuss a well-known analytical approximation for Δ′ in tokamaks giving a 

stability parameter ∝ (rj| | ′/Bθ) [12]. Multiplying and dividing by Bz (constant for 

tokamaks) gives µo(rj| | ′/Bθ) → aqλ′ for spheromaks and RFP’s with safety factor q =  

(rBz /aBθ) for major radius a, giving in turn the following approximate criterion for 

stability [12]: 

 

|(qrµo/q′Bθ)(d(j⋅B/Bz)/dr)| → |aq2(λ′/q′)|  < m (4) 

 

where (λ′/q′) with ′ ≡ d/dr is the important factor in the destabilizing term of the free 

energy δW ∝ -rΔ′.  Here all quantities are to be evaluated at a magnetic resonance q = 
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m/n with poloidal mode number m and toroidal number n = kza for circularized flux 

surfaces equivalent to the cylinder model which, for spheromaks, has radius a = R/2 with 

flux conserver radius R and length L = 2π a.  

           According to Eq. (4), in the interior the stability of flattened λ profiles follows 

from the weaker gradient in λ versus q, evident in the stable profile of Fig. 2, while 

stability at the edge is aided by the fact that q → 0 there. The crucial region lies between, 

requiring more careful examination of λ in Eq. (1) versus q, given for the cylinder model 

by (with ψ = r2/a2 for the cylinder): 

 

 λa =  λoa[1 – (r2/a2)N ]     =    [2q – r(dq/dr)]/[q2 + (r2/a2)] (5) 

 

Near the magnetic axis, we  expand q = qo[1 – A(r/qoa) 2 + ⋅⋅] and substitute this into Eq. 

(6) giving to lowest order qo = 2/(λoa) and A and the relationship. Using also the fact that 

the volume average <λ> = λoN/(N + 1) ≈ 2/a, the Taylor state value, we obtain λo = 

(2/a)(N + 1)/N and qo = N/(N + 1). This q profile gives instability at r = 0 for N = 1 but 

stability for N ≥ 2.  To explore the edge, we can set q = 0 in the numerator and 

denominator in Eq. (5) giving dq/dx = 1/2 λa with x= r2/a2. This too gives stability for N 

≥ 2, marginally so for resonances around r/a ≈ 0.5 where the corresponding |Δ′a| is 

smallest.  

            Though qualitatively in agreement with Robinson’s findings, these analytical 

results do not yield accurate thresholds for stability. Pearlstein has calculated Δ′ for a 

cylinder model with aspect ratio and boundary conditions appropriate for spheromaks, 

and finds the stability threshold to be N > 5 for λ profiles in the cylinder approximating 

those in Eq. (1) [13]. Also, toroidal effects are very important for spheromaks.  

            Quantitative guidance requires further numerical computation, to which we now 

turn, using NIMROD that also takes account of toroidal effects.  

 

B.  Numerical Stability Analyses Using NIMROD  

NIMROD is a non-linear resistive MHD code evolving initial states in time in 3D 

[6]. Here we use this code only to verify the linear stability of the equilibria described in 

Section 2, including toroidal effects, as follows.  
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 The 2D equilibria calculated using the Corsica code, discussed in Section 2, are 

accurately introduced into the NIMROD code. Then linear stability (of both ideal MHD 

and tearing modes) is tested by time dependent calculations with non-linear terms 

disabled, to determine if initial perturbations grow in time. For numerical convenience we 

restrict attention to internal modes, in that a toroidally-closed conducting wall is 

introduced at the last closed flux surface shown in Fig. 3.  This test is carried out for 

values of N = 2 to 6 in Eq. (1) in order to detect  numerically the threshold value of N 

above which stability is obtained. Modes with toroidal mode numbers n up to 10 were 

investigated.  

 Fig. 4 shows the λ and q profiles for N = 2, 3 and 4 (see Figure 2 for N = 6 

profiles). In NIMROD calculations, the modes with toroidal mode numbers n = 4 and n = 

5 had positive growth rate for N = 2  and the growth rate of the perturbation energy is 

shown in Fig. 5. (Note that the N = 2 case does not have a q = 1/3 surface to support a n = 

3 mode).  For N = 3,  the n = 3 mode is unstable and the linear growth rate is also shown 

in Figure 5. In contrast to these cases, for N = 4, all modes are observed to be stable. This 

is illustrated in Fig. 6 by the negative growth rate for n = 3, 4 and 5. Other mode numbers 

also give negative growth rate for N = 4. These calculations were repeated for N = 5 and 

N = 6 and these also show stability to all modes up to n = 10.  

 Therefore NIMROD confirms our expectation that sufficiently flat λ profiles are 

stable to current-driven ideal and resistive internal modes. For the equilibrium model of 

Eq. (1), the threshold value for stability as indicated by NIMROD is 3 < N < 4, indicating 

less flattening to achieve stability than did the cylinder model, presumably due to the 

toroidal effects included in NIMROD.  

 

4. Current Drive Power 

To assess the relevance of our work to fusion energy research, we calculate the 

power PCD required to sustain the current for the stable equilibrium in Figure 2, and then 

calculate as a figure of merit the fusion power gain Q given by: 

 

Q =  PF/PCD    = (4πR2/0.8)(PW/PCD)  (6) 
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PW  =    (0.8/4πR2)∫dV(1/4 n2σv 17.6 MeV)    = 0.11no
2R σvo CF (7) 

  

In Eq. (6), PF is the fusion power (80% neutrons), expressed on the right in terms of the 

power density PW of fusion neutrons bombarding a spherical vacuum chamber of radius R 

that also serves as a flux conserver. In Eq. (7) defining PW in MW, n in units 1020 m-3 and 

σv in units 10-22  have values at the magnetic axis (denoted by subscript o), weighted by 

CF = ∫dV/V (n/no)2(σv/σvo). In calculating the numerical factor 0.11, we approximate the 

plasma volume as a cylinder giving V = 2π2a3 with a = R/2 as in Section 3.  

For concreteness, in calculating PCD we focus on neutral beam current drive. The 

current generated by neutral beams in spheromaks is given in Ref. [14] using Monte 

Carlo calculations for the slowing down of beam ions by collisions with electrons and 

plasma ions. A good representation of such calculations is [15]: 

 

j = e(Sτ)v (1- 1/ZEff) cosθ  ∝ (SE)(TJ/n)  (8) 

 

with beam injection at an angle θ relative to field lines; beam deposition rate S per unit 

volume; beam ion slowing down time by electron collisions τ ∝ T3/2/n; a screening factor 

due to electron current containing ZEff ; and a mean ion speed v ∝ (E/T1/2)J with beam 

energy E and a factor J discussed below. On the right, we assume a fixed value for ZEff (≈ 

2) and for θ  ( = 0, parallel injection). Solving Eq. (8) for the deposition power density SE 

gives, with j ∝ I (the total current) and numerical factors obtained from Ref. [15]: 

 

 PCD  = ∫dV SE  = 20 (InoR/To)C    (9) 

 

 C = 0.18∫dV/V (n/no)(j/jo)[(7/Xo
2) + Xo(To/T)3/2 + 2(To/T)]  (10)  

 

Here power is in MW for current in MA, with T in KeV. The integrand in 

weighting factor C is obtained using, from Ref. [13], J = X2/[(7 + X3/2 + 2 X2] with X2 = 

(E/15T) for deuterium beams, the factor 0.18 being the maximum value of J for any X. 

For the current profile of Figure 2 and T = To(1 – 0.99ψ) in a reactor (100 eV edge 
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temperature), C = 0.5 for a density profile n ∝ T for the optimum Xo = 1.5, but C = 2 for 

constant n. Thus reactor optimization may require pellet fueling to cause n to peak at the 

center, except at the edge where the beam provides most of the density just to carry the 

current (n ∝ j). Assuming n ∝ j everywhere gives C = 0.8.  

     Eq. (9) exhibits the scaling for current drive power in Ref. [16] and it fits 

numerically results for parallel injection into a spheromak in Ref. [14]. It also fits results 

in Ref. [17] for the DIIID tokamak when corrected to take into account tokamak 

geometry (spheromak R twice the tokamak major radius), limited beam access due to the 

toroidal coils (giving θ ≈ 70o) and a factor 2 degradation due to instability driven by 

super-Alfvenic ion wave excitation in these experiments [17].  

Eqs. (6) - (10) can be used to explore the reactor potential for a spheromak 

employing neutral beams to maintain a stable current profile. The reactor size to achieve 

a given Q and wall load can be found as follows. First  we solve Eq. (7) for n in terms of 

the wall load.  For To  = 50 KeV (chosen to reduce electron drag on beam ions), we 

obtain, with σv = 8.7, n = 1.0 (PW/CFR)1/2. Then we introduce this n into Eq. (6), having 

first obtained Q in terms of n by substituting Eqs. (7) and (9) into Eq. (6), and we solve 

the resulting equation for R, giving: 

  

 R = 0.089 PW
-1/3(IQ)2/3(C2/CF)1/3 = 0.089 PW

-1/3(IQ)2/3 (11) 

 

where on the right we have set the weighting factor (C2/CF))1/3 = 1 for a peaked density 

profile (C = 0.5, CF  ≈ 0.33). At fixed Q, both the fusion power and the beam power scale 

as R2PW ∝ PW
1/3 giving a fixed cost per kW of fusion power for beams but a lower 

confinement facility cost per kW at higher PW.  

Guessing I = 50 MA for ignition (the value in Ref. [3]), Q = 20 gives R = 3 m for 

PW = 20 MW/m2 (the parameters of Ref. [3]) and R = 5 m for PW = 5 MW/m2 as in most 

reactor studies. This is to be compared with an equivalent R = 20 m for ITER and R =      

10 m for the ARIES-AT advanced tokamak reactor [18]. The required beam power is PCD  

≈ 100 MW with E ≈ 1 MeV , in the range of the beam system for ITER. Higher wall 

loads and smaller size are achievable with “liquid walls,” especially for pulsed reactors 

[19]. 



 9 

 

  

 

 

5. Discussion 

 The potentially small size of spheromak reactors discussed in the previous 

section, with no toroidal coils, continues to offer an attractive alternative route to fusion 

power, if the good plasma confinement exhibited in SSPX extrapolates to larger systems. 

The  main difficulty concerns steady state operation, not yet achieved with good 

confinement during steady state sustainment by gun injection, perhaps for fundamental 

reasons [20]. Sustaining the current by neutral beams or other non-inductive current drive 

appears to be a viable alternative, in which the current drive system also exercises profile 

control to maintain a stable state of the kind discussed  in Sections 2 and 3.   

 The confidence to pursue a spheromak program with current drive could be 

greatly strengthened by more computer simulations, using the NIMROD code already 

validated extensively to explain magnetic turbulence in SSPX and the conditions required 

to achieve low turbulence levels and good energy confinement [4]. A similar effort has 

already led to successful profile control and record temperatures in the MST reversed 

field pinch [11]. A concerted effort using NIMROD could address many open issues, 

about physics, suitable experiments and reactor prospects.  

An important physics issue concerns effects at finite β. Experiments in SSPX 

have already achieved β ≈ 10%, comparable to that in the reactor design of Ref. [3], but 

transiently, during plasma decay on the L/R timescale τ = (µo/2ηλ2) with resistivity η [2]. 

For steady state, theory has long predicted the slow growth of magnetic islands on about 

this timescale for plasmas with finite β and negative shear (q′/q < 0) as in spheromaks, 

even if tearing modes are stabilized (Δ′ < 0), at a rate given approximately by [21]: 

 

d(w/a)2/dt = (1/τ)[- (w/a)|Δ′a| + βG]    (12) 

 

Here w is the island width and G is a geometric factor proportional to |p′/p| and magnetic 

scalelengths. The most vulnerable zone is probably midway between the magnetic axis 
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and the edge where β is still large and |Δ′a| is smallest for the stabilized current profile, as 

discussed in Section 3A, giving a saturated width w/a =  (βG/|Δ′a|).  The NIMROD 

simulations advocated here could explore pressure-driven resistive instabilities and their 

non-linear consequences, with more attention to gridding around resonances in steady 

state than has yet been attempted in our work or in SSPX analysis. Otherwise, the main 

physics issue appears to be achieving a  λ profile sufficiently flat in the interior. Given a 

profile stable to ideal and resistive MHD modes, we might expect tokamak-like energy 

confinement, and indeed confinement in SSPX can be shown to be no worse than L-mode 

scaling, while the nτ assumed in Ref. [3] is comparable to ITER-98P(y,2) scaling.   

 While experimental design and reactor studies are outside the scope of this paper, 

preliminary ideas are discussed in Ref. [22]. Briefly, experiments with neutral beams 

should anticipate the need to control the λ profile during buildup: without profile control, 

inductive drive alone does not yield a  fully stable state in RFP’s and stably decaying 

spheromaks eventually evolve toward strongly unstable states. That said, it may be best 

to build up current using the neutral beams to  maintain profile control during buildup, or 

perhaps a combination of beams and flux control [23]. Buildup could be initiated on a 

gun-created target plasma, as in SSPX, with a target magnetic field strength just adequate 

to confine beam ions and to assure that ion speeds are sub-Alfvenic (to avoid TAE 

modes).  

Estimates yielding a representative series of experiments employing neutral beam 

buildup are given in Ref. [22]. Preliminary calculations using the code employed in Ref. 

[24] confirm the possibility of driving all of the current using an array of neutral beams 

aimed so as to produce a desired λ profile. Quantitative results could be obtained by 

installing on NIMROD one of the neutral beam packages now used in tokamak codes to 

calculate the beam power more accurately, giving also a means for optimizing the 

number of beams and their injection angles to achieve a stable state while simultaneously 

monitoring the quality of flux surfaces. Our studies suggest considerable latitude in stable 

profile shapes,  so long as the λ profile is flatter in the interior than would normally be 

the case without profile control. Unlike small tokamaks, spheromaks have beam access to 

achieve optimal aiming nearly parallel to field lines (cosθ ≈ 1), requirements being 

similar to those explored in mirror devices including the Field Reversed Mirror with coil 
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geometry and goals similar to the spheromak discussed here [25]. The main cost for an 

experimental program to pursue these ideas could be avoided by sharing existing neutral 

beam systems employed in tokamak research [22]. For reactors, the beam power would 

generally be higher in spheromaks which have zero bootstrap current, compared to 

ARIES-AT that assumes 91% bootstrap current [18]. But NIMROD studies could provide 

the physics input for an ARIES-like spheromak study to elucidate tradeoffs between 

higher injection power versus the lower cost and much simpler divertor of spheromak 

confinement systems [22].   

 In summary, we have shown the existence of states linearly stable to tearing and 

ideal MHD modes in spheromaks, with no need to achieve stability by the toroidal field 

coils that have characterized tokamaks and determined the pace and cost of research 

leading to ITER. Historically, it was the ideal and resistive MHD physics featured in 

NIMROD that drove research toward the tokamak solution. NIMROD simulations 

extending our work could help decide whether the toroidal field coils of tokamaks are 

really necessary, perhaps paving the way to better fusion reactors in the future, in parallel 

with ITER.  
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Fig.1  Flux surface averaged parallel current density vs normalized poloidal flux for 
Taylor state. 
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Fig. 2  Profiles for exponent N=6  (Eq. (1))  
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Fig. 3 Poloidal flux contours for profile shown in Fig. 2 (N=6) 
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Fig.4  λ and q profiles for N=2,3 and 4; for N=2 the maximum value of q is 0.321. 
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Fig.5  The growth rate results from NIMROD for N=2 and 3 showing instabilities.  
Constancy of growth rate shows convergence of the time dependent calculations. 
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Fig.6 Growth rate (negative) for a few of the toroidal mode numbers for N=4 indicating 

stability.
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