MOVING BEYOND PUMP AND TREAT TOWARD ENHANCED ATTENUATION AND COMBINED REMEDIES T-AREA, SAVANNAH RIVER SITE

PDF Version Also Available for Download.

Description

Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site, is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site has received approval to discontinue the active treatments and implement a full scale test of enhanced attenuation--an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council. Enhanced attenuation uses active engineering solutions to alter the target site in ... continued below

Creation Information

Looney, B; Brian Riha, B; Warren Hyde, W; Jay Noonkester, J & Gerald Blount, G April 3, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site, is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site has received approval to discontinue the active treatments and implement a full scale test of enhanced attenuation--an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council. Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination) and stimulates long-term attenuation capacity in the distal plume (via cometabolism). For T-Area, the enhanced attenuation development process proved to be a powerful tool in developing a defensible strategy that provides a high degree of performance while minimizing adverse collateral impacts of remediation (e.g., energy use and wetland damage) and minimizing life-cycle costs.

Notes

available

Source

  • Remediation Of Chlorinated and Recalcitrant Compounds Conference

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-STI-2008-00186
  • Grant Number: DE-AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 927602
  • Archival Resource Key: ark:/67531/metadc894162

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 3, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 2, 2016, 5:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Looney, B; Brian Riha, B; Warren Hyde, W; Jay Noonkester, J & Gerald Blount, G. MOVING BEYOND PUMP AND TREAT TOWARD ENHANCED ATTENUATION AND COMBINED REMEDIES T-AREA, SAVANNAH RIVER SITE, article, April 3, 2008; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc894162/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.