
Running Infiniband on the Cray XT3

Makia Minich
Oak Ridge National Laboratory

Oak Ridge, TN
minich@ornl.gov

Keywords: Cray, XT3, infiniband, Voltaire, linux, OFED,
OpenFabrics

Abstract
In an effort to utilize the performance and cost benefits of
the infiniband interconnect, this paper will discuss what was
needed to install and load a single data rate infiniband host
channel adapter into a service node on the Cray XT3. Along
with the discussion on how to do it, this paper will also pro-
vide some performance numbers achieved from this connec-
tion to a remote system.

OVERVIEW AND GOALS
System Layout

Since a discussion of the Cray XT3 architecture is beyond
the scope of this document, we are going to focus on the over-
all layout of the systems used in our test. Figure 1 shows the
extremely basic overview of the connections between our sys-
tems. (If you would like more specifics on the Cray XT3 ar-
chitecture, visit the Cray website1 which has a lot of useful
marketing media that provides a good overview.)

Figure 1. System Layout

Rizzo is a single rack of XT3 hardware comprised of 14
IO nodes (7 IO modules) and 68 compute nodes (17 com-
pute modules). Each of these IO nodes has a single 133MHz
PCI-X available for an expansion card. For this testing, we
have placed a dual-port, single data rate (SDR), 128MB
Voltaire host-channel adapter (HCA) into one of the IO nodes
and connected it to a Voltaire 9024 (24-port SDR infiniband

1http://www.cray.com

switch). While it would be more preferential (for testing as
well as moving forward) to have more than one HCA in
Rizzo, at the time only one was installed.

On the other end, we have Spider which is an x86_64 based
linux cluster. While Spider has a large number of nodes avail-
able, for this testing only four nodes were used. Each of the
nodes have a dual-socket dual-core 2.2GHz AMD Opteron
with an 8-lane PCI-Express based Voltaire 4x SDR HCA.

The Voltaire 9024 and Spider are co-located, which allows
us to use a standard CX4 infiniband cable (1 meter lengths)
between the nodes of Spider and the Voltaire switch. Rizzo
happens to be a larger distance away (around 23 meters), so
we needed to use Emcore’s SmartLink QTR34002–a CX4 to
fiber converter–to allow us to run a longer fiber connection
between Rizzo and the Voltiare 9024.

Normally, when someone talks about infiniband and clus-
ters, they are talking about using it as a high-performance in-
terconnect within a cluster. But, as you can see, in this testing
we’re using it to bridge two (or more) clusters together so
that we can provide a fast data-movement path between the
multiple clusters.

Operating System Software
Operating System
To avoid delving to deep into the intricacies of the XT3

software stack, we are going to focus on the two main pieces
that we need to be aware of. The IO nodes (and any type of in-
teractive node on the XT3) run diskless with a SuSE-derived
base OS (currently based on SuSE Enterprise 9). The com-
pute nodes, on the other hand, run Catamount which allows
the compute nodes to boot a micro-kernel and an application.3

This allows the compute nodes to spend all of their cycles
running the application which can help to reduce OS jitter.
Spider, being a standard linux cluster, is running RedHat En-
terprise Linux Workstation release 4 update 3. The system
breakdowns can be seen in table 1.

From the OS Comparison table we see that a kernel version
is mentioned for the Catamount nodes. While one can’t easily
typeuname -r on the command line of the compute node
(primarily due to the lack of any user-level interaction), there
is an actual kernel version associated with that boot (hence

2http://www.emcore.com/assets/fiber/pb.QTR3400_&_QTR3432.2004-
12-12.Emcore.pdf

3http://www.cray.com/downloads/Cray_XT3_Datasheet.pdf



Table 1. OS Comparison

System OS Kernel Version
Rizzo UNICOS 1.4.19
• IO Nodes SuSE Enterprise 9 2.6.5-7.252-ss
• Compute Nodes Catamount 2.6.5-7.252-ni
Spider RedHat Enterprise Linux Workstation 4 update 32.6.9-42.EL_lustre.1.4.7smp

the-ni suffix in the table). This kernel is encapsulated in the
stage2.sf file, which is created by the build process for
the XT3 software stack.

Infiniband Stack
The OpenFabrics Alliance4 recently began distributing an

enterprise version of their stack. Created through a collabo-
ration between different infiniband vendors and opensource
commutinty contributors, the OpenFabrics Enterprise Distri-
bution (OFED) is touted as the stable and supported open-
source infiniband stack. While development is still ongoing
for the main OpenFabrics software branch, the OFED stack
takes snapshots in time, to create a supported product for the
infiniband community. These releases supply an easy to build
and install framework which allows users to start utilizing
their infiniband interconnect regardless of what vendor and
OS stack is loaded on the system. By unifying the infiniband
stack, it has become easier to manage software revisions on
multiple platforms as well as provide consistent API’s for in-
terconnect development on these platforms.

Our testing is focussing on OFED 1.0.1 which contains
some amount of support for all of the kernels involved in our
testing. While normally we would build all of the tools asso-
ciated with the infiniband stack, our system layout precludes
us from needing things like MPI. More importantly, we’re
going to need IP-over-IB (IPOIB) for standard ethernet con-
nections, remote-DMA access to pass large amounts of data
across the interconnect, and the sockets direct protocol (SDP)
to efficiently encapsulate IP traffic into IB traffic.

Test Suite
The following tests were used to determine not only the

functionality of the infiniband connection but also to graphi-
cally plot the performance. Because of the nature of our sys-
tem (which is described in more detail in sections and ), we
can only focus on RDMA and IP based tests. As a side ef-
fect, though, this combination will also allow us to test SDP
(sockets direct protocol) over the IP interface.

RDMA Tests
Provided as a default functionality test by the OpenFabrics

Enterprise Distribution,ib_rdma_bw andib_rdma_lat

4http://www.openfabrics.org

(RDMA bandwidth and latency respectively) allow us to mea-
sure the total throughput we could expect from the hardware
(removing any constraints that the higher level infiniband pro-
tocols would impose).

The RDMA tests default to running at one packet size (65
kilobytes forib_rdma_bw and 1 byte forib_rdma_lat),
so a script was needed to allow us to see what the trends are
for multiple packet sizes. Listing 1 shows the script used to
allow us to test from 2 to 223 bytes for bandwidth and 2 to 28

bytes for latency.

Listing 1. RDMA Script
# ! / b i n / sh

# I f t h i s i s a c l i e n t , we must s u p p l y on t h e command l i n e
# who t h e s e r v e r i s .
REMOTE=$1

# We’ l l do two runs , f i r s t f o r bandwidth , and s econd f o r
# bi−d i r e c t i o n a l bandwid th .
f o r run in " " "−b" ; do

i f [ " $ run " = "−b " ] ; then
echo " B i d i r e c t i o n a l Bandwidth T e s t "

e l s e
echo " Bandwidth T e s t "

f i

# P r i n t o u t a n i c e header
[ "$REMOTE" ] &&

echo " # b y t e s BW peak [MB/ s e c ] BW a ve ra ge [MB/ s e c ] \
Demand peak [ c y c l e s /KB] Demand a ve ra ge [ c y c l e s /KB] "

i =2
# I t e r a t e from 2 t o 2^23
whi le [ $ i − l e 8388608 ] ; do

# The u s e f u l o u t p u t w i l l be done on t h e r emote node .
i f [ "$REMOTE" ] ; then

# P r i n t t h e c u r r e n t message s i z e .
p r i n t f "%−7d " $ i
# R e for mat t h e o u t p u t o f ib_rdma_bw t o make i t
# f i t our h e a d e r s .
p r i n t f "%−15f %−18f %−22d %d \ n " \

$ ( ib_rdma_bw $REMOTE $run−s $ i |
awk −F" : " \
’ / ( peak | a ve ra ge | Avg ) / \
{ sub ( / .∗ : / , " " ) ; \
sub ( / .∗$ / , " " ) ; \
p r i n t } ’ |

p a s t e −s ) 2 >/ dev / n u l l
e l s e

# S t a r t t h e s e r v e r s i z e and l e t us know what
# p a c k e t i t ’ s a t .
echo $ i
ib_rdma_bw $run−s $ i > / dev / n u l l

f i
# I n c r e m e n t
i =$ ( ( $ i ∗2 ) )

done
done

echo " La tency T e s t "
[ "$REMOTE" ] &&



echo " # b y t e s t y p i c a l [ usec ] b e s t [ usec ] wo rs t [ usec ] "
i =2
# I t e r a t e from 2 t o 2^8 f o r t h e l a t e n c y t e s t .
whi le [ $ i − l e 256 ] ; do

i f [ "$REMOTE" ] ; then
# P r i n t t h e c u r r e n t message s i z e
p r i n t f "%−7d " $ i
# R e for mat t h e o u t p u t t o match our h e a d e r s .
p r i n t f "%−13f %−10f %f \ n " \

$ ( i b _ r d m a _ l a t $REMOTE−s $ i |
awk −F" : " \
’ / La tency / { sub ( / .∗ : / , " " ) ; \
sub ( / .∗$ / , " " ) ; \
p r i n t } ’ |

p a s t e −s ) 2 >/ dev / n u l l
e l s e

echo $ i
i b _ r d m a _ l a t−s $ i > / dev / n u l l

f i
i =$ ( ( $ i ∗2 ) )

done

Plots of the output from this script are shown in the later
figures.

NetPIPE
NetPIPE5 is another bandwidth and latency measurement

tool. While it does typically use MPI over Infiniband (or any
other high performance interconnect), NetPIPE can also uti-
lize tcp-based connections, which allows us to test IP-over-
IB (IPOIB) connections. NetPIPE performs a ping-pong style
transfer to measure the transmission rates, and then outputs a
table of latency and bandwidth measurements for a range of
packet sizes.

Because of the nature of the TCP connections used by Net-
PIPE, we were easily able to use these same tests to mea-
sure the performance of SDP over the infiniband connection.
By using LD_PRELOAD to load the libsdp .so libraries, we
were able to use the same NetPIPE binary to test both stan-
dard TCP connections as well as SDP connections.

Iperf
Iperf6 is another tool that attempts to measure maximum

TCP bandwidth. This is a fairly standard network perfor-
mance test and is supplied here just as an added compari-
son. Because of the TCP nature of this binary, we are able to
again use LD_PRELOAD to load the libsdp .so libraries and
thereby run Iperf over an SDP connection between nodes.

GETTING INFINIBAND ON THE XT3
On a normal cluster, such as Spider, building and loading

the OFED stack is a relatively easy process. You can easily
follow the instructions provided by the OFED release doc-
umentation to get things up and running. Life is a little bit
different on the XT3 though, as there are a few caveats to
keep in mind. The first is that we will only be affecting the IO

5See URL http://www.scl.ameslab.gov/Projects/NetPIPE
6See URL http://dast.nlanr.net/Projects/Iperf

nodes on the XT3, the Catamount nodes will need to rely on
routing over Portals to utilize the infiniband connection (such
as for lustre). The second is the limitations set out in the ker-
nel provided by Cray. Because the XT3 is a fully supported
platform, Cray makes specific decisions about what is made
available in the kernel and what is available in the hardware.
This is made painfully obvious when you attempt to build and
load the OFED stack only to receive the dreadfulunknown
symbol errors.

Kernel Changes
When we were initially bringing up infiniband on the XT3,

we required a couple changes to the default running kernel
on the IO-nodes. Two symbols that were not exported by
the kernel which OFED relies on;bad_dma_address and
dev_change_flags. Applying the following patch to the
IO-node kernel source, addresses this problem:

Listing 2. Kernel Patches
# Pa tc h to a rc h / x86_64 / k e r n e l / pc i−nommu . c
@@ −10,6 +10 ,9 @@

∗ Dummy IO MMU f u n c t i o n s
∗ /

+dma_addr_t bad_dma_address ;
+EXPORT_SYMBOL( bad_dma_address ) ;
+

vo id ∗ p c i _ a l l o c _ c o n s i s t e n t (s t r u c t pc i_de v ∗hwdev ,
s i z e _ t s i z e ,

dma_addr_t ∗dma_handle )
{

# Pa tc h to ne t / c o re / dev . c
@@ −3482 ,10 +3482 ,7 @@

# i f d e f i n e d (CONFIG_BRIDGE ) | | \
d e f i n e d (CONFIG_BRIDGE_MODULE)

EXPORT_SYMBOL( br_hand le_ f rame_hook ) ;
# e n d i f

−/∗ f o r 801 q VLAN s u p p o r t ∗ /
−# i f d e f i n e d (CONFIG_VLAN_8021Q) | | \

d e f i n e d (CONFIG_VLAN_8021Q_MODULE)
EXPORT_SYMBOL( de v_c ha nge _ f l a gs ) ;

−#e n d i f
# i f d e f CONFIG_KMOD
EXPORT_SYMBOL( dev_ load ) ;
# e n d i f

At this point, we are able to rebuild the kernel. We booted
onto this kernel to make sure that everything was working
properly. In order to build the OFED modules (covered in the
next section), we used this modified source (rather than uti-
lizing the kernel headers provided by the installed XT3 soft-
ware).

Later versions of the XT3 kernel (starting with Unicos re-
lease 1.5) actually now have these patches incorporated. This
makes building and running the OFED stack much easier in
the long run. No longer do we need to rebuild the kernel, nor
do we actually need the source code to build the OFED mod-
ules (instead we are able to utilize the header files located in
/opt/xt-os/default).



Building and Loading OFED
Once we had a working kernel, we proceed to building the

OFED stack. To avoid kernel versioning mismatch errors, it is
important to keep an eye on the gcc versions throughout this
process. First, we need to make sure and build OFED with the
same gcc version that the running kernel was built with (e.g.
if the kernel was build with gcc-3.2, you need to build the
modules with gcc-3.2). As an added bonus, a lot of the OFED
tools fail to compile with gcc-3.2 and would prefer to be built
with gcc-3.4 or higher. For this reason, we build the modules
first and then the rest of the stack later. This is easily done by
changing theofed.conf file to first build the modules and
then modifying it later to build the userspace tools.

At this point, we found that a change was needed to the
OFED source code because it was found that the OFED stack
didn’t seem to recognize the XT3’s kernel as a proper kernel
value, and therefore didn’t apply any of the needed patches
to get things working. So, it was needed to decompress the
openib-1.0.1.tgz source file, apply the patch in listing
3 and then re-compress.

Listing 3. OFED Patches
# Pa tc h to c o n f i g u r e
@@ −259,7 +259 ,7 @@

done
# Apply d e f a u l t p a t c h e s
case ${KVERSION} in

− 2.6 .5−7.244∗ )
+ 2 . 6 . 5−7 .∗ )

p r i n t f " \ nApp ly ing p a t c h e s f o r ${KVERSION} \
k e r n e l : \ n "

i f [ −d ${CWD} / p a t c h e s /2 . 6 . 5−7 . 244 ] ; t he n
f o r pa tc h in ${CWD} / p a t c h e s /2 . 6 . 5−7 . 244/∗

When all was said and done, we ended up with a few
RPM’s that we could then install into our IO node image and
be off and running, configuring the system just like any other
SuSE based image.

PERFORMANCE OF INFINIBAND ON THE
XT3

After successfully getting the infiniband connection up and
running on the XT3, we were able to measure the actual per-
formance of the infiniband link. Because of our system archi-
tecture, there is a limit in the types of tests that could be run.
In then end, though, we should be able to get a clear picture
on what kind of performance we can achieve.

For each of these tests, we will be using a node from Spider
(spider-server) as our server node. The client nodes, spider-
client and rizzo-io, will each connect to spider-server to per-
form the test. While it isn’t preferential to mix the architec-
tures (really, we should have two Rizzo nodes interacting) us-
ing the same server node for both tests at least gives a good
starting point.

RDMA Tests
First, we’ll start with the RDMA tests, which should give

us a good baseline of the overall performance of the infini-
band interconnect. For this test, we will be running a serveron
spider-server with clients on rizzo-io as well as spider-client.
Figure 2 shows the results of this test.

Figure 2. RDMA Performance

Right away one can see the benefits of the PCI-Express
bus (specifically with the bidirectional tests), with abouta
300MB/s difference between Rizzo and Spider. But, there is
something very interesting to pay attention to. The 133MHz
PCI-X bus has a theoretical peak of 1GB/sec, and Rizzo
is performing at about 900MB/s, so unidirectionally we are
able to achieve close to the same rates as the PCI-e links
(many PCI-X based systems are still utilizing the 100MHz
PCI-X bus, which would have caused a peak limit at about
800MB/sec).

The latency difference between the two systems may be a
function of the bus differences, but more than likely this isdue
to the HCA hardware. There are a number of differences be-
tween the PCI-X release and the PCI-e release of the Voltaire
HCA, and one of the advancements has been in dealing with
reducing the length of the path the packet needs to take in



getting out of the HCA.

NetPIPE
Now that we’ve seen the raw bandwidth that should be

available, we can now shift our focus to TCP based band-
width. If we were to use something standard, such as NFS or
SCP, over the infiniband connection, we would be relegated
to the IP-over-IB interface. It is no secret that current IPoIB
performance leaves a lot to be desired, but it is still usefulto
see what we can expect from IPoIB if we need to use it. As a
side effect of this, we are also able to take a look at SDP per-
formance (which basically encapsulates the TCP traffic and
re-routes it to the RDMA level). While still in heavy devel-
opment, SDP is already proving to be quite useful. Figure 3
shows the results of our testing.

Figure 3. NetIPIPE Performance

On first glance, one can clearly see the primary benefit of
SDP over the standard IPoIB interface. Where the SDP is con-
cerned, one can also see the effect of PCI-e versus PCI-X.
Oddly, though, in the IPoIB performance, Rizzo (with PCI-
X) outperforms Spider. While we don’t have any quantitative
data to explain this, a possible explanation is the maturityof

the PCI-X HCA compared to the PCI-e HCA (overall, more
time has been put into the development of the firmware for the
PCI-X HCA, which could lead to more time available to im-
prove the IPoIB performance). The results from latency aren’t
overly surprising.

Another interesting point to mention is the comparison of
the peak on SDP compared to the RDMA peak from the pre-
vious section. For RDMA, we’re seeing about 7 to 7.5 Gbps
for a unidirectional stream, while we’re only seeing between
4 and 5 Gbps from SDP. As more development continues on
the SDP drivers, we should hopefully see these numbers im-
prove.

Iperf
Our last test is just a quick Iperf run to verify the peak

bandwidth that we’re seeing with both IPoIB as well as SDP.
Figure 4 shows the results.

Figure 4. Iperf Performance

Again, we see the oddity of Rizzo besting Spider on
straight IPoIB performance. Overall, though, we are not see-
ing anything surprising from these results and can feel a little
more confidence in our ability to use the infiniband connec-
tion.

CONCLUSIONS
After a few gotchas in the initial attempts at bringing up in-

finiband on the XT3, we think that this shows quite well that
it can be done both functionally and effectively. These first
steps open the door to being able to provide another high-
speed data movement path off the XT3. With this new abil-
ity, we could effectively, for example, utilize the infiniband
interconnect as a storage network using SRP, iSER or even
using Lustre7 over infiniband to move large data sets from
the XT3 to a centralized Lustre filesystem. Though there is

7http://www.lustre.org



a large amount of work still to be done to raise non-RDMA
performance closer to RDMA levels, the door is at least open
for the infiniband world to include the XT3.

ACKNOWLEDGEMENTS
The author would like to thank Don Maxwell from ORNL

for putting up with innappropriately timed full system crashes
and a ton of incessant XT3 questions. Also, we’d like to thank
Andrew Lehtola from Cray for pushing our kernel changes
through the management chain and into the real release.


