INITIAL MAR ASSESSMENTS TO ACCESS THE IMPACT OF AL DISSOLUTION ON DWPF OPERATING WINDOWS

PDF Version Also Available for Download.

Description

SRNL was tasked to provide an assessment of the downstream impacts (or lack thereof) to DWPF of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with high temperature Al-dissolution and without Al-dissolution. In general, paper study assessments indicated that most of the future sludge batches (twelve with and fourteen without high temperature Al-dissolution) had multiple frits available that yielded relatively large operating windows. The projected operating windows were defined by the ... continued below

Creation Information

Newell, J; Tommy Edwards, T & David Peeler, D February 5, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

SRNL was tasked to provide an assessment of the downstream impacts (or lack thereof) to DWPF of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with high temperature Al-dissolution and without Al-dissolution. In general, paper study assessments indicated that most of the future sludge batches (twelve with and fourteen without high temperature Al-dissolution) had multiple frits available that yielded relatively large operating windows. The projected operating windows were defined by the waste loading (WL) interval over which glasses were classified as acceptable based on current process control models and their related constraints. Although multiple frits were identified, using a 17-point width as a general guide for a reasonable operating window (e.g., 25-41% WL), there generally appeared to be more flexibility in frit selection for the without Al-dissolution flowsheets. This larger frit compositional platform could allow frit development efforts to make more significant adjustments to melt rate. However, based on the general observations of the paper study, there is essentially no clear distinction between the two options with which to drive a decision to implement Al-dissolution. That is, comparable operating windows can be achieved through the frit development and selection process for either process. One could interpret this general summary statement to indicate: given frit development efforts can compensate for the different pretreatment strategies yielding equivalent operating windows or maximum WL targets, the lower sludge mass as a result of Al-dissolution would obviously result in reducing the number of cans produced at DWPF. Although the basic mathematics is technically sound, other factors need to be considered including facility operating times or mission life for the Tank Farm, DWPF and Saltstone. To address some of these questions, candidate frit compositions have been selected to assess melt rate as a function of waste loading for the glass systems representing future sludge batches with and without Al dissolution. The frit selection process was driven by reviewing compositional trends that have historically influenced melt rate as well as identifying systems with relatively large operating windows. With respect to the identification of sludge batches to support the melt rate testing, average compositions representing with and without Al-dissolution 'clusters' were developed using a statistical grouping routine. Ultimately, five frits were identified for each average 'cluster' composition. Melt rate assessments will be performed as a function of waste loading for the five frits selected. The data obtained from the experimental melt rate program can be used in combination with actual DWPF processing data to provide valuable insight into the waste throughput potentials for both flowsheets.

Notes

available

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-STI-2007-00688
  • Grant Number: DE-AC09-96SR18500
  • DOI: 10.2172/924155 | External Link
  • Office of Scientific & Technical Information Report Number: 924155
  • Archival Resource Key: ark:/67531/metadc894107

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 5, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 12, 2016, 12:17 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Newell, J; Tommy Edwards, T & David Peeler, D. INITIAL MAR ASSESSMENTS TO ACCESS THE IMPACT OF AL DISSOLUTION ON DWPF OPERATING WINDOWS, report, February 5, 2008; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc894107/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.