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Abstract: Exponential growth and superradiance regimes in a high-gain
free electron laser (FEL) are studied in this paper for both a seeded FEL
and a Self-Amplified Spontaneous Emission (SASE) FEL. The results are
compared to the earlier superrdaince theory and the recent experimental
observation. The influence of an initial energy chirp along the electron
bunch on the superradiance mode is explored for the first time. With a short
seed to increase the initial seed bandwidth, a tunable seeded FEL is possible.
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Exponential growth and superradiance regimes exist in a high-gain free electron laser (FEL).
For a seeded FEL, in the exponential growth regime, the seed power is exponentially amplified;
the pulse duration, the frequency bandwidth, and the frequency chirp are modified [1, 2, 3, 4].
The exponential growth stops when the FEL induced energy spread gets too large compared to
the FEL Pierce parameter ρ [5, 6]. The exponential growth is regarded as a steady state solution,
where the slippage effect is small. In contrast to this, the superradiance regime should be studied
when slippage is important. Superradiance has been studied theoretically [7, 8, 9]. Recently,
study showed the possibility of pulse shortening in the superradiance regime [10]. This has been
verified experimentally [11]. In this paper, we first illustrate that the exponential growth mode
and the superradiance mode arise from the same origin, i.e., they are two saddle points in the
FEL Green function with emphasis on the FEL group velocity and slippage effect. We show the
pulse shortening and give some detailed temporal and spectral information in the superradiance
regime to compare with the experiment [11]. We then show that by injecting an ultrashort seed
pulse, the seeded FEL can be tunable over a large bandwidth. The concepts are applicable to
both the seeded FEL and the Self-Amplified Spontaneous Emission (SASE) FEL, however the
mathematical derivation in the following will be mostly for the seeded FEL. To analyze the
start-up of a seeded FEL amplifier we use the coupled set of Vlasov and Maxwell equations
which describe the evolution of the electrons and the radiation field [12, 13, 14]. The seeded
FEL can be described by an integral representation of the initial seed, A(θ ′,0), convoluting
with the FEL Green function [2]. The FEL electric field is written as E(t,z) = A(θ ,Z)e i(θ−Z)

with A(θ ,Z) being the slow varying envelope function. The evolution is [2]

A(θ ,Z) =
∫

c

ds
2π i

esZ
∫ θ

−∞
dθ ′e−s(θ−θ ′)+ i(2ρ)3(θ−θ ′)

(s−iμθ )(s−iμθ ′) A(θ ′,0), (1)

where ρ is the Pierce parameter, μ = (dγ/dt)2/(γ0ωs) is the energy chirp along the electron
beam with γ0 being the resonance energy, Z = kwz, θ = (ks + kw)z−ωst, where ks = 2π/λs,
ωs = ksc, and kw = 2π/λw with λs being the radiation wavelength, λw the undulator period,
and c the speed of light in vacuum. The double integral in Eq. (1) can be evaluated by first
performing the contour integral to obtain the Green function. Explicitly,

A(ŝ, ẑ) =
∫ ∞

0
dξ̂ e−iα̂ ŝ(ẑ−2ξ̂)A

(
ŝ− ξ̂ ,0

)
g
(

ẑ, ξ̂ , α̂
)

, (2)

with the Green function g(ẑ, ŝ, α̂) and the corresponding phasor f (p, ẑ, ŝ, α̂) defined as

g(ẑ, ŝ, α̂) ≡ 2
∫

c

dp
2π i

exp{p(ẑ−2ŝ)+2iŝ/[p(p− iα̂ŝ)]} ≡ 2
∫

c

dp
2π i

exp [ f (p, ẑ, ŝ, α̂)] . (3)

To compare our work with previous work [7, 8, 9], the notations are, ẑ = 2ρZ, ŝ = ρθ , and α̂ =
−μ/(2ρ2). The Green function is estimated by saddle point approximation. The saddle point
ps is found from d f (p)/dp| p=ps = 0, and the Green function is approximated as g(ẑ, ŝ, α̂) ≈
2exp [ f (ps, ẑ, ŝ, α̂)][2π f ′′ (ps, ẑ, ŝ, α̂)]−1/2. For the un-chirped case, i.e., α̂ = 0, the phasor is



f (p, ẑ, ŝ, α̂ = 0) = p(ẑ−2ŝ)+2iŝ/p2. The saddle point is found from p3 −4iŝ/(ẑ−2ŝ) = 0. If
p is not a function of ŝ, the ponderomotive phase, then pẑ is not an oscillating function; hence
a steady state solution. This is determined by ẑ− 2ŝ = η ŝ, with η being a constant. Under
this condition, p3 − 4iŝ/(ẑ−2ŝ) = 0 becomes p3

s = 4i/η . At this saddle point, the phasor is
f (ps) = (4i/η)1/3 ẑ− (4i/η)1/3 2ŝ+2iŝη2/3/(4i)2/3. Hence, for f (ps) not to be a function of
ŝ, we need −(4i/η)1/3 2ŝ+2iŝη2/3/(4i)2/3 = 0, which sets η = 4, i.e., 4ŝ = ẑ−2ŝ. This gives
ps,0 = i1/3, which supports a steady state solution, the exponential growth mode. Notice that
4ŝ = ẑ−2ŝ gives the FEL group velocity as vg = ωs/(ks +2kw/3). When the FEL evolves into
superradiance regime, the group velocity goes back to the speed of light in vacuum [10]. This
indicates that the condition 4ŝ = ẑ− 2ŝ should be abandoned. Indeed, for v g = c, we need ẑ−
2ŝ = 0. However; since p∼ (ẑ−2ŝ)−1/3, epẑ has an essential singularity. In summary, for η → 4,
the general condition ẑ−2ŝ = η ŝ leads to the condition 4ŝ = ẑ−2ŝ, which supports exponential
growth mode; for η → 0, the general condition leads to ẑ−2ŝ = 0 for the superradiance mode.

Superradiance has been studied using collective variables approach [7, 8, 9]. The asymptotic

solution of Ref. [8] was given in Eq. (28) as |ASR| ≈ (b0/
√

3π)(z1/y)exp
[
3(
√

3/2)(y/2)2/3
]
=

(2b0/
√

6π)
√

ŝ(ẑ−2ŝ)−1 exp
{

33/22−4/3
[√

ŝ(ẑ−2ŝ)
]2/3

}
, where we have switched from their

notation to ours, i.e., z1 = 2ŝ, z2 = ẑ − 2ŝ, z̄ = ẑ, y =
√

z1z2 =
√

2ŝ(ẑ−2ŝ), and b0

is the initial bunching. Now, according to p3 − 4iŝ/(ẑ−2ŝ) = 0, the growth mode is
ps = 41/3i1/3ŝ1/3(ẑ−2ŝ)−1/3. This then gives the phasor and Green function as f (ps) =

3i1/3
[√

ŝ (ẑ−2ŝ)
]2/3

/21/3 =⇒ g(ẑ, ŝ, α̂) ∝ exp
{

33/2
[√

ŝ(ẑ−2ŝ)
]2/3

/24/3
}

. Comparing this

Green function which arises at the saddle point ps = 41/3i1/3ŝ1/3(ẑ−2ŝ)−1/3 to the superra-
diance field in Eq. (28) of Ref. [8] quoted above, we conclude that the superradiance indeed
arises from yet another saddle point in the Green function in Eq. (3).

Fig. 1. (a) FEL intensity P≡ |A(θ ,Z)|2 at Z = 0.5Zup (red), 0.6Zup (yellow), 0.8Zup (green),
0.9Zup (blue), and Zup (purple). (b) Genesis simulation of the FEL power at Z = 0 (red),
0.2Zup (yellow), 0.4Zup (green), 0.6Zup (blue), 0.8Zup (dark blue), and Zup (purple).

After comparing the un-chirped case to previous work [7, 8, 9], we study the effect of the
energy chirp in the electron bunch on the superradiance. We rewrite Eq. (2) with the notations
in Eq. (1), and perform a saddle point approximation, we have

A(θ ,Z) ≈ i1/621/6ρ1/2
√

3π

∫ ∞

0
dξ

ξ 1/6A(θ − ξ ,0)
(Z− ξ )2/3

eiμ(θ−ξ/2)(Z−ξ )+3i1/321/3ρ(Z−ξ )2/3ξ 1/3
. (4)

For an initial Gaussian seed, E(t,z = 0) = E0e−iωst−α0t2 = E0eiθ−θ2α0/ω2
s =⇒ A(θ ,0) =

E0e−θ2α0/ω2
s , where α0 = 1/(4σ 2

t0) with σt0 being the initial seed rms pulse duration.



(a) (b)

Fig. 2. (a) FEL field envelope |A(θ ,Z)| (red), the real part of A(θ ,Z) (blue), the imaginary
part of A(θ ,Z) (green), and the phase φ(θ ,Z) of A(θ ,Z) (yellow) at Z = Zup. (b) Plot of the
FEL field envelope |A(θ ,Z)| (red), the phase φ(θ ,Z) of A(θ ,Z) (blue), the ∂φ(θ ,Z)/(∂θ )
(green), and the ∂2φ(θ ,Z)/(∂θ 2) (yellow) at Z = Zup.

We study the example in Ref. [11]. The parameter set is: σ t0 ≈ 45 fs, μ = 0, Z ∈ [0.5Zup,Zup]
with Zup ≡ (2π/0.039)10≈ 1611, ρ = 10−3, and λs = 0.8 μm. Recall that Z = kwz and kw =
2π/λw with λw = 3.9 cm being the undulator period and Lw = 10 m the undulator total length.
In Fig. 1(a), we plot the FEL intensity P ≡ |A(θ ,Z)|2 at Z = 0.5Zup,0.6Zup,0.8Zup,0.9Zup, and
Zup. It is seen that the pulse duration gets shorter, if we trace the main pulselet. At Z = 0.5Z up,
the rms pulse duration σt is about σt ≈ 75 fs, and at Z = Zup, σt ≈ 35 fs. Also we observe that
the FEL pulse develops pulselets. According to our convention, the main pulselet is at the head
of the FEL pulse towards the right in Fig. 1. Simulation with Genesis [15] for the same set of
parameters and with initial seed power Pin = 1 MW, shows the evolution of the FEL pulse in
Fig. 1(b) for Z ∈ [0,Zup]. In both results, we find the pulse shortening and pulselet development.
This agrees with the experimental observation that the FEL pulse temporal duration increases
in the exponential growth regime and decreases in the superradiance regime [11].

(b) (c)(a)

Fig. 3. Wigner function at Z = Zup for μ = 0(a), 2.0×10−6(b), and −2.0×10−6(c).

Details of the FEL pulse at Z = Zup is shown in Fig. 2(a) with the amplitude as the red
curve, the real part the blue, the imaginary part the green, and the phase the yellow. To
get the sign of the chirp in the superradiance mode, recall that, E(t,z) = A(θ ,Z)e i(θ−Z) =
|A(θ ,Z)|eiφ(θ ,Z)+i(θ−Z) ≡ |A(θ ,Z)|e−iΦ(t,z), where Φ(t,z) = ωst − ksz− φ(θ ,Z) = Φ(tc,z) +
∂Φ/(∂ t)|t=tc (t−tc)+ (1/2)∂ 2Φ/

(
∂ t2

)∣∣
t=tc

(t−tc)2 + · · ·, in which tc stands for the pulse cen-

troid. With this, we have ∂Φ/(∂ t) = ωs + ωs∂φ/(∂θ ), and ∂ 2Φ/
(
∂ t2

)
= −ω2

s ∂ 2φ/
(
∂θ 2

)
.

From Fig. 2(b), we find that ∂φ(θ ,Z)/(∂θ ) < 0 in the main pulselet, hence, the entire pulse
gets redshifted. This agrees with Fig. 1(b) of Ref. [11]. Furthermore, the chirp flips sign at
roughly the center of the main pulselet. From the center to the head ∂ 2φ(θ ,Z)/(∂θ 2) < 0,
hence a positive chirp; and from the center to the tail a negative chirp. The second pulselet has
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Fig. 4. Genesis simulation of the FEL power at Z = 0 (red), 0.2Zup (yellow), 0.4Zup (green),
0.6Zup (blue), 0.8Zup (dark blue), and Zup (purple) for γ = 198.6(a), 199.6(b), and 200.6(c).
The upper row is for σt ∼ 42.5 fs, and the lower row σt ∼ 8.5 fs.

(a) (b)

Fig. 5. (a) FEL power as a function of the electron energy and the seed duration. The dot
(red) • is for σt = 42.5 fs with the solid curve (red) as the spectrum form factor, and the
triangle (green) 
 for σt = 8.5 fs with the dashed curve (green) as the spectrum form factor.
(b) FEL power as a function of the seed duration.

a small positive chirp. To further compare with the experiment [11], as in Ref. [2] the Wigner
function W (t,ω ,z) ≡ ∫ ∞

−∞ E (t − τ/2,z)E∗ (t + τ/2,z)e−iωτdτ at Z = Zup is shown in Fig. 3. In
Fig. 3(a), we set μ = 0, i.e., no energy chirp. It is seen that the second pulselet, i.e., from the
pulse center to the pulse tail, bears a positive chirp, which agrees with that in Fig. 2(b). For the
main pulselet, it is complicated, similar to Fig. 3 of Ref. [11]. For Fig. 3(b) and (c), the electron
bunch has μ = ±2.0×10−6, respectively. Phase space rotation due to this energy chirp is seen.

Having identified the saddle points in the FEL Green function for the exponential growth
mode and the superradiance mode, we now study the evolution of these two modes. For a
SASE FEL, the radiation starts from shot noise, and develops into many spikes. A good
description for this process is to model the spikes as random δ−function pulses along the
electron bunch, and these spikes travel towards the head of the electron bunch. During this
process, the coherence length increases and the temporal duration of the spikes increases. For
a seeded FEL, as long as the seed is much short compared to the electron bunch, the seed will
travel through the electron bunch in a similar way as the above described case. Even though,
the seed can be so strong that the electron bunch gets energy modulated quickly and FEL
process starts from these energy modulated electrons quickly. To explore this more clearly,
let us take the limit of a δ−function seed, i.e., A(θ ,0) ∼ δ (θ ). In this limit, the evolution in

Eq. (4) is reduced to A(θ ,Z) ∼= θ 1/6(Z−θ )−2/3e3i1/321/3ρ(Z−θ)2/3θ1/3
for superradiance, and



eρ(
√

3+i)[Z−9(θ−Z/3)2/(4Z)] for exponential growth [2] with μ = 0. The δ−function seed passes
through the electron bunch with speed of light in vacuum, hence we have Z−θ → 0. This sup-
ports the superradiance growth due to the singular point of (Z −θ ) 2/3 in the denominator; but

the exponential growth mode is not excited since Z − 9(θ − Z/3)2/(4Z)
(Z−θ)→0

=⇒ 0. However,
since the energy modulated electrons will keep radiating, as long as the resonance condition is
satisfied, the late emitted radiation will coherently merge with the proceeding radiation. Macro-
scopically, the FEL pulse grows in temporal duration and the macroscopic group velocity slows
down from the speed of light in vacuum. This then is termed as the exponential growth mode.

Let us explore the detuning effect on the exponential growth and the supperradiance. For
the SASE FEL, since there is no external seed, if the electron bunch energy is deviated from
the resonance condition, the exponential growth mode still exists. Even though, it will have
a different wavelength and different efficient. For the seeded FEL, however, the late emitted
radiation will have a different wavelength from that of the seed, and it will not add coherently
with the seed. Yet, if the seed is short enough, then the ultra-short seed has a very wide spec-
trum, hence the seeded FEL with an energy detuned electron bunch will start as efficiently as
that with an electron bunch having the resonant energy, even though the central wavelength
is shifted. For a transform limit Gaussian seed with rms temporal duration of σ t , the rms fre-
quency bandwidth is σω = 1/(2σt). For a seeded FEL, the initial seed then supports a rela-
tive bandwidth of σω/ωs = 1/(2σtωs), which in turn supports a relative energy detuning of
Δγ/γ0 = σω/(2ωs) = 1/(4σtωs). Hence, with an ultrashort seed, a seeded FEL acts like a sin-
gle spike SASE FEL, and exponential growth mode is excited. Indeed, a short seed having a
broad bandwidth increases the tunability of the seeded FEL. For the experiment [11], the nom-
inal radiation wavelength is λs = 0.8 μm, ρ = 2.5×10−3, so in order for Δγ/γ0 > ρ , we need
σt < 42.5 fs. We define the tunability as χ ≡ 1/(4ρσtωs), which should be compared to the
detuning D ≡ (γ 2 − γ2

0 )/(2ργ2
0 ). To further explore this tunability concept, we invoke Genesis

simulation with results shown in Fig. 4. For the upper row, σ t = 42.5 fs, which gives χ = 1. The
resonance is shown in Fig. 4(b) with γ0 = 199.6. For Fig. 4(a) and (c), D = ∓2, respectively,
and the peak power starts to decrease. Decreasing the seed pulse duration to σ t = 8.5 fs, the
results are in the lower row. There is essentially no difference for D ∈ [−2,2]. In summary,
the FEL peak power as a function of the electron bunch initial energy is shown in Fig. 5(a) for
both the case of σt = 42.5 fs and 8.5 fs. Indeed, this amplification bandwidth, or the tunable
range is determined mostly by the initial seed bandwidth. For a Gaussian seed, the power is
P(t) = e−t2/(2σ2

t ) with the spectrum form factor P̃(ω) = e−(ω−ω0)2σ2
t /2, which is plotted in Fig.

5(a) as the curves, that agree with the simulation results well. This confirms that the tunability is
mostly due to the broadband initial seed, which contains broad spectrum content to be resonant
to a detuned energy. With an ultrashort seed to provide broadband spectrum content, together
with a large tuning range modulator [16], a tunable cascaded seeded FEL is possible. In ad-
dition, there is an optimization of the initial seed pulse duration to get maximum FEL output
power for a given system. For the parameter set in this paper, the FEL power as a function of
the seed duration is shown in Fig. 5(b). The optimization detail is beyond the scope here.

In summary, we study superradiance and exponential growth in a high-gain FEL. The super-
radiance and exponential growth originate from two different saddle points of the FEL Green
function, respectively. For the exponential growth regime, the saddle point locates at p s,0 = i1/3;

while for the superradiance regime, ps = 41/3i1/3ŝ1/3(ẑ−2ŝ)−1/3(ẑ−2ŝ)→0
=⇒ ∞. The analysis on the

superradiance, for the first time, includes an energy chirp in the electron bunch. With a short
seed, the seeded FEL can have a large tunability range. The work of JW was supported by the
US Department of Energy under contract DE-AC02-76SF00515. The work of JBM and XW
was supported by the US Department of Energy under contract DE-AC02-98CH10886.
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