A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress within Arteriovenous Grafts

PDF Version Also Available for Download.

Description

A deployable, shape memory polymer adapter is investigated for reducing the hemodynamic stress caused by a dialysis needle flow within an arteriovenous graft. Computational fluid dynamics simulations of dialysis sessions with and without the adapter demonstrate that the adapter provides a significant decrease in the wall shear stress. In vitro flow visualization measurements are made within a graft model following delivery and actuation of a prototype shape memory polymer adapter. Vascular access complications resulting from arteriovenous (AV) graft failures account for over $1 billion per year in the health care costs of dialysis patients in the U.S.[1] The primary mode ... continued below

Physical Description

PDF-file: 13 pages; size: 1 Mbytes

Creation Information

Ortega, J M; Small, W; Wilson, T S; Benett, W; Loge, J & Maitland, D J August 16, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A deployable, shape memory polymer adapter is investigated for reducing the hemodynamic stress caused by a dialysis needle flow within an arteriovenous graft. Computational fluid dynamics simulations of dialysis sessions with and without the adapter demonstrate that the adapter provides a significant decrease in the wall shear stress. In vitro flow visualization measurements are made within a graft model following delivery and actuation of a prototype shape memory polymer adapter. Vascular access complications resulting from arteriovenous (AV) graft failures account for over $1 billion per year in the health care costs of dialysis patients in the U.S.[1] The primary mode of failure of arteriovenous fistulas (AVF's) and polytetrafluoroethylene (PTFE) grafts is the development of intimal hyperplasia (IH) and the subsequent formation of stenotic lesions, resulting in a graft flow decline. The hemodynamic stresses arising within AVF's and PTFE grafts play an important role in the pathogenesis of IH. Studies have shown that vascular damage can occur in regions where there is flow separation, oscillation, or extreme values of wall shear stress (WSS).[2] Nevaril et al.[3] show that exposure of red blood cells to WSS's on the order of 1500 dynes/cm2 can result in hemolysis. Hemodynamic stress from dialysis needle flow has recently been investigated for the role it plays in graft failure. Using laser Doppler velocimetry measurements, Unnikrishnan et al.[4] show that turbulence intensities are 5-6 times greater in the AV flow when the needle flow is present and that increased levels of turbulence exist for approximately 7-8cm downstream of the needle. Since the AVF or PTFE graft is exposed to these high levels of hemodynamic stress several hours each week during dialysis sessions, it is quite possible that needle flow is an important contributor to vascular access occlusion.[4] We present a method for reducing the hemodynamic stress in an AV graft by tailoring the fluid dynamics of the dialysis needle flow using a deployable shape memory polymer (SMP) dialysis needle adapter. Such an adapter is deployed through the needle into the graft where it is actuated into an expanded shape using thermal energy. The expanded adapter has a tube-like shape, in which the distal end has a larger cross-sectional area than that of the needle. When the dialysis session is completed, the adapter is retracted through the needle. In this initial study, we conduct computational fluid dynamics (CFD) simulations to assess the changes in the hemodynamic stress on a graft wall when the SMP adapter is utilized. Additionally, we fabricate a prototype SMP adapter and deploy it in an in vitro model of an AV graft.

Physical Description

PDF-file: 13 pages; size: 1 Mbytes

Source

  • Journal Name: Institute of Electrical and Electronics EngineersTransactions in Biomedical Engineering, vol. 54, no. 9, September 1, 2007, pp. 1722-1724; Journal Volume: 54; Journal Issue: 9

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-223874
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 936706
  • Archival Resource Key: ark:/67531/metadc894069

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 16, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 8, 2016, 10:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ortega, J M; Small, W; Wilson, T S; Benett, W; Loge, J & Maitland, D J. A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress within Arteriovenous Grafts, article, August 16, 2006; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc894069/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.