
SANDIA REPORT
SAND2004-5114
Unlimited Release
Printed October 2004

Securing Mobile Code

Erik Anderson, Cheryl Beaver, William Neumann and Richard Schroeppel
Cryptography and Information Systems Surety Department

Phil Campbell
Networked System Survivability and Assurance Department

Hamilton Link
Advanced Information and Control Systems Department

Lyndon Pierson
Advanced Networking Integration Department

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A

SAND2004-5114
Unlimited Release

Printed October 2004

Securing Mobile Code

Erik Anderson, Cheryl Beaver, William Neumann, and Richard Schroeppel
Cryptography and Information Systems Surety Department

Phil Campbell
Networked System Survivability and Assurance Department

Hamilton Link
Advanced Information and Control Systems Department

Lyndon Pierson
Advanced Networking Integration Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0785

3

Abstract

If software is designed so that the software can issue functions that will move that software
from one computing platform to another, then the software is said to be “mobile.” There
are two general areas of security problems associated with mobile code. The “secure host”
problem involves protecting the host from malicious mobile code. The “secure mobile code”
problem, on the other hand, involves protecting the code from malicious hosts. This report
focuses on the latter problem.

We have found three distinct camps of opinions regarding how to secure mobile code.
There are those who believe special distributed hardware is necessary, those who believe
special distributed software is necessary, and those who believe neither is necessary. We
examine all three camps, with a focus on the third.

In the distributed software camp we examine some commonly proposed techniques in-
cluding Java, D’Agents and Flask. For the specialized hardware camp, we propose a cryp-
tographic technique for “tamper-proofing” code over a large portion of the software/hard-
ware life cycle by careful modification of current architectures. This method culminates
by decrypting/authenticating each instruction within a physically protected CPU, thereby
protecting against subversion by malicious code.

Our main focus is on the camp that believes that neither specialized software nor hard-
ware is necessary. We concentrate on methods of code obfuscation to render an entire
program or a data segment on which a program depends incomprehensible. The hope is to
prevent or at least slow down reverse engineering efforts and to prevent goal-oriented attacks
on the software and execution. The field of obfuscation is still in a state of development with
the central problem being the lack of a basis for evaluating the protection schemes. We give
a brief introduction to some of the main ideas in the field, followed by an in depth analysis
of a technique called “white-boxing”. We put forth some new attacks and improvements on
this method as well as demonstrating its implementation for various algorithms. We also
examine cryptographic techniques to achieve obfuscation including encrypted functions and
offer a new application to digital signature algorithms. To better understand the lack of
security proofs for obfuscation techniques, we examine in detail general theoretical models
of obfuscation. We explain the need for formal models in order to obtain provable security
and the progress made in this direction thus far.

Finally we tackle the problem of verifying remote execution. We introduce some methods
of verifying remote exponentiation computations and some insight into generic computation
checking.

4

Contents

1 Introduction: What is “secure mobile code?” 11

2 Specialized Software Solutions 15

2.1 Java . 15

2.2 D’Agents . 15

2.3 Flask . 16

3 Specialized Hardware Solutions 20

3.1 FPGA Implementation . 22

3.2 Software Shrink Wrap Process . 24

3.3 Future Specialized Hardware Work . 26

4 Software Solutions Requiring neither Specialized Software nor Hardware:
Obfuscation Techniques 28

4.1 Collberg’s Taxonomy . 28

4.2 Sander & Tschudin . 29

4.3 Wroblewski . 32

4.4 Wang . 33

4.5 Hohl . 34

4.6 Ng . 37

5 White-Box Obfuscation 38

5.1 Overview of White-Box DES. 40

5.2 An Introduction To White-Boxing Techniques . 41

5

5.2.1 White-Box Encoding Terminology . 42

5.2.2 White-Box Encoding Techniques . 43

5.2.3 Bijective Encoding and Local Security . 47

5.3 White-Boxing Example: DES . 47

5.3.1 Unobfuscated DES . 47

5.3.2 White-Box DES . 48

5.4 Attacks on Chow’s White-Box DES . 53

5.4.1 Attack on Split T-Box Output . 53

5.4.2 Differential Fault Injection Attack . 55

5.5 Implementation Improvements . 57

5.5.1 Statistical Bucketing Attack Resistance . 57

5.5.2 Differential Fault Injection Attack Resistance . 58

5.5.3 Optimizing Construction . 60

5.6 Extensions Of These Techniques . 62

5.6.1 Application to triple-DES . 62

5.6.2 White-Box Encoded AES . 63

5.7 Future White-Boxing Work . 64

6 Cryptographic Approaches to Securing Mobile Code 66

6.1 Computing with Encrypted Data . 66

6.2 Computing with Encrypted Functions . 67

6.2.1 Function Composition. 67

6.2.2 Encrypting Functions via Homomorphic Encryption. 67

6.3 Digital Signatures . 68

6.3.1 Undetachable Digital Signatures . 69

6.3.2 Verifiably Linked Signatures . 69

7 Impossibility vs. Possibility Results for Circuit Obfuscation 73

7.1 Preliminaries . 73

6

7.2 Obfuscators . 74

8 Future Obfuscation Work 84

9 Verifying Remote Execution 89

9.1 GIMPS . 89

9.2 Distributed Search, with Opponents . 91

9.3 Modular Exponentiation . 92

9.3.1 Exponentiation with Multiple Remote Machines 92

9.3.2 Exponentiation with Just One Remote Machine 94

9.3.3 Checking a Generic Computation . 97

7

List of Figures

2.1 “Write once, run anywhere” . 16

2.2 Flask Security Architecture (from [28] and [45]). 17

2.3 OS Bypass. 18

3.1 The goal is protection over a major portion of the software life cycle. 20

3.2 Major components of FE hardware architecture. 22

3.3 Shrink Wrapped Code Layout . 25

4.1 Universal Control Structure . 33

4.2 Sample Procedure . 34

4.3 Universal Structure Equivalent of Figure 4.2 . 35

4.4 Alias Examples . 36

4.5 Shopping Agent . 37

4.6 A Second Shopping Agent . 37

4.7 A Third Shopping Agent . 37

5.1 Decomposition of an affine transform . 40

5.2 The basic structure of DES . 48

5.3 DES as a sequence of table and matrix operations . 49

5.4 Exploiting T-Box domain and preimage structure . 54

5.5 Depiction of differential cryptanalysis attack . 56

7.1 Gate by gate emulation of a circuit for k = 3. 78

7.2 Possibility results for circuit obfuscation. 83

8

List of Tables

1.1 Defense Model . 12

4.1 Notation . 29

4.2 Example Transformations (from Collberg’s taxonomy) 31

5.1 Expected information gain in bits of final round subkey for s-box 1. 59

5.2 Comparison of white-box DES implementations . 61

5.3 Optimizing time and space of DES construction . 61

8.1 Initial Part of an Obfuscated Program . 87

9

10

Chapter 1

Introduction: What is “secure
mobile code?”

If software is designed so that the software can issue functions that will move that software
from one computing platform to another, then the software is said to be “mobile.” (Such
software presumes a distributed computing environment that can carry out such move func-
tions.) There are two general areas of security problems associated with mobile code. The
“secure host” problem involves protecting the host from malicious mobile code. The “se-
cure mobile code” problem, on the other hand, involves protecting the code from malicious
hosts. This report focuses on the latter problem. We note that this issue applies not only
to “mobile” software that can move itself, but also to any code running on a host computer
that is not completely trusted such as, say, for a remote computation; nevertheless, we will
usually refer to the problem as the “secure mobile code” problem.

The secure mobile code problem assumes that the code is on an adversary’s computer
and that (a) the adversary can at any time examine any of the bits comprising the code
and its data, (b) can change any of those bits, and (c) has similar access to all of the
registers during execution should the adversary decide to execute the code, allowing for
replay attacks. In addition, (d) the adversary can change bits after execution. That is,
the adversary has complete control of the code before, during, and after execution. Based
on the above assumed capabilities we present a simple, corresponding model of defense, in
three levels and shown in Table 1.1, where the adversary would have to achieve level i in
order to achieve level i + 1.

We have found three distinct camps of opinions regarding how to secure mobile code.
There are those who believe special distributed hardware is necessary, those who believe
special distributed software is necessary, and those who believe neither is necessary.1 In
this report, we will examine all three camps, with a focus on the third.

When neither specialized software nor hardware is present, secure mobile code must
be executable as is. It is unlike, say, encrypted code that requires a pre-processing step
(decryption) before it is executable. Each instruction is in plaintext. However, the word
“secure” in secure mobile code implies that the code is nevertheless protected in some way.

1Perhaps there is a fourth group that thinks it is impossible to secure mobile code with any technique.

11

Level Prevent the adversary from...
1 ...understanding the intention of the code.
2 ...being able to change the code in a goal-directed way.
3 ...being able to create his own unobfuscated (and thus

maintainable) copy of the functionality of the code.

Table 1.1. Defense Model

Unfortunately, the term says nothing directly about data: is that not to be secure also? To
remove any confusion with encrypted code and at the same time to avoid problems with
the word “secure” and to distinguish code from data we think that the terms “executable
protected code” (EPC) and “readable protected data” (RPD) are superior and less likely to
confuse. Such code is generally referred to as “obfuscated” code, suggesting that the code
is protected by its being obscured or confused in such a way that is it is difficult to make
sense of it but it is at the same time executable as is: it is not encrypted. As a consequence,
the portion of this report dealing with solutions requiring neither specialized software or
hardware concentrates on obfuscation.

A homely analogy may be of help in grasping the concept of obfuscated code. Suppose
we visit a friend and find that he is in the kitchen with various jars and bags and bowls on
the table. We ask him what he is doing. He could make one of two replies.

Obfuscated Description:

He replies that he is putting two cups of this – he points – into this bowl
– again he points – and four tablespoons of this – again he points – in as
well, whereupon he says he will stir it up and leave it to one side for a few
minutes. Meanwhile he says that he will put four of these and two cups of
that and four tablespoons of this and four cups of that and a cup of this and
a half a cup of that, along with a cup and three quarters of this, all in the
blender and stir it up. After a few minutes he will combine these ingredients
with the ones in the other bowl, then he will add many cups of this while he
stirs. That will complete the first step.

Plaintext Description:

He replies that he is making bread.

For completeness, there is a third reply. Encrypted Description:

Jx $ruiq9 pwvj k’ dm 9ejfsc k%scw.

Note that the encrypted reply has exactly the same number of characters as the unobfus-
cated one (for ease of comparison we show the spaces unencrypted), unlike the obfuscated
one which has a distinctly different number of characters. Note also that the encrypted
reply is not “executable” as is: it makes no sense. One would have to decrypt it before
proceeding.

12

When we look at obfuscated code, then, presuming we cannot break the obfuscation we
cannot see the “big picture”.

Obfuscated Description:

Here is a load of address 10 to register 2. And here is a move of address 17
to address 12. And here is a zero of register 4. And so on.

Plaintext Description:

Here is a sort routine.

The central problem currently facing obfuscation is the lack of a basis for evaluating
protection schemes. 2 When presented with code that we are told is obfuscated we have
no gauge by which to measure the obfuscation. Granted, the code may be unintelligible to
us-and may still be unintelligible after much examination-but this is qualitative, subjective,
and unrepeatable. To make matters worse obfuscation, like steganography, is best when it
is not even noticed, when the code does not even have the appearance of being obfuscated,
when we sail right through it and are confident that we know precisely what it is doing,
completely fooled. A step forward would be a black box that could tell us which of two
obfuscated versions of a code were stronger, even if we had no theory of how the black box
worked. As it is, we do not know of any such black box, let alone any theory.

So the floodgate, so to speak, that is holding back progress on obfuscation is a gauge
by which to measure strength.

Oddly enough the need for a gauge itself is curious. Someone once remarked that
software obfuscation should be easy since obfuscation seems to be software’s natural state.
We seem to spend all of our time doing our best just to keep the cursed stuff from slipping
through our fingers and on into obfuscated oblivion. Yet, by one of those puzzles of nature,
now that we see a use for obfuscated code we seem unable to produce it.

This report is organized as follows. In Chapter 2 we briefly discuss some proposed
software only approaches to securing mobile code including Java, D’Agents and Flask.

In Chapter 3 we discuss specialized hardware solutions including a Sandia developed
method for shrink wrapping software that is then run on a special trusted hardware volume.

The remaining chapters are devoted to software solutions requiring neither specialized
software or hardware. In particular, we concentrate there on the approach of code obfusca-
tion. In Chapter 4 we examine some of the important approaches to obfuscation put forth
in the past few years.

In Chapter 5 we look in detail at the obfuscation method known as “white-boxing”.
In particular we describe a white-box implementation applied to the cipher DES as well
as some attacks against it. We show how the method can be improved to withstand the
attacks and also apply the white-boxing method to the AES cipher.

In Chapter 6 we describe some cryptographic methods to achieve obfuscation including
2As Loureiro notes, “[Obfuscation’s] major drawback is the lack of theoretical foundations in order to

establish precise definitions of security, and accordingly to be able to quantify the security of the underlying
transformations” ([22], page 21).

13

encrypted functions and applications to digital signature algorithms. Although the cryp-
tographic approaches do allow for some provable results against breaking the obfuscation,
they only apply to a small class of functions.

In Chapter 7 we examine in detail general theoretical models of obfuscation. We explain
the need for formal models in order to obtain provable security and the progress made in
this direction thus far.

Chapter 8 describes some possible future research directions in the field of obfuscation.

Finally in Chapter 9, we tackle the complex issue of verifying execution of code on
remote machines. In particular, we put forth some new methods for verifying exponentiation
computations and examine the idea of generic execution checking.

14

Chapter 2

Specialized Software Solutions

One approach to the implementation of mobile code in general is to execute the code on
distributed software. The hardware and its location may be foreign, so to speak, but the
system software is just like home. In this chapter we will consider three examples of this
approach – the Java, D’Agents, and Flask – each closer to the hardware than the last. Our
conclusion is that the problem of trust persists, even when we control the software that has
exclusive control of the hardware.

2.1 Java

Java is probably the most famous example of an implementation of mobile code via dis-
tributed software. The “distributed software” in this case is the Java Virtual Machine
(JVM). In order to execute a code written in Java, the user first “compiles” the source
code, translating it from the high-level language of Java into the intermediate language of
Java “bytecodes.” The bytecodes are the input language of the JVM. A JVM on a given
platform executes Java bytecodes on that given platform. Once in bytecodes, a Java code
can be executed on any platform that has a JVM, fulfilling the dictum, “Write once, run
anywhere,” meaning that a single version of a code written in Java can execute on any
platform that has a JVM, as suggested in Figure 2.1. Of course we have to trust whatever
lies below the JVM if we are to run our Java bytecodes “anywhere.”

2.2 D’Agents

Another example of a mobile code system implemented via distributed software, this one at
a level closer to the hardware than the JVM, is D’Agents [20]. D’Agents requires server code
to be available on each machine that runs the agents. D’Agents agents can be written in
more than one language: the D’Agents server code sits logically “beneath” the interpreters
for those languages, such as the JVM. In turn, beneath the server code, sit “resource man-
agers” for the CPU, the file system, libraries, the network, the screen, and other resources.
Migration can be performed in a single instruction: “agent jump.” When agents migrate,

15

Figure 2.1. “Write once, run anywhere”

they can use encryption and/or signatures to provide confidentiality and/or authentication.
However, if the target server of a jump does not trust the source machine, then the agent is
downgraded to the untrusted “anonymous” status. Amongst machines in a single domain
(i.e., controlled by the same organization) there is usually sufficient trust; trust between
domains is problematic but outside the scope of D’Agents.

2.3 Flask

Below a JVM and below D’Agents code is an operating system. Within these software
artifacts exist the same problems of trust that D’Agents faces explicitly and that the JVM
faces implicitly. The problem, less delicately described, is spoofing or “bypass.” An ab-
stract architecture intended to address this issue is Flask [18], implemented, for example,
in Security-Enhanced Linux (SE Linux) [43]. Minear presents a similar application of the
Flask architecture to a Mach based system [33]. (See also Watson’s description of Trust-
edBSD, a “trusted” form of FreeBSD [50].) The Flask architecture is shown in Figure 2.2.
(Not shown in the figure is the existence of an object manager1 for each type of object (e.g.,
process, file).)

1The object managers are part of the kernel but not part of Flask per se.

16

Figure 2.2. Flask Security Architecture (from [28] and [45]).

Flask provides flexible, fine-grained, mandatory access control. The figure shows some
of the machinery that provides that capability. A Client (i.e., an application) requests
approval to perform an action on an object. The request is directed to the manager of that
object. This point in the kernel is referred to as a “control point.” The object manager
in turn queries the Security Server, effectively asking the question, “Can this subject take
this action on this object?” The Security Manager bases its decision on (a) a security policy
described in a file and (b) the label passed to the Security Manager from the Object Manager
for the object in question. The Security Server returns a decision-yes or no. When the
Object Manager has received the decision, it enforces it. The Access Vector Cache, placed
between the Object Manager and the Security Server, reduces the performance penalty
for the overhead of the architecture to an acceptable level, from about 500% down to
approximately 5%. The description of the Security Policy resides in a file. Changing the
file contents changes the policy. This ability is referred to as “flexibility.”

Not shown in the diagram is the fine-grained nature of the access control in Flask. Flask
presumes that every security-relevant access request, each control point, results in a query
to the Security Server, the overhead for which is minimized by the Access Vector Cache.

The access control provided by Flask is intended to be mandatory. That is, once the
Security Policy file is in place, there is a set of access control decisions that are made by
the Security Server and are not at the discretion of the user (via the application) to make.

There are three general ways to mount a bypass attack on Flask:

1. spoof the Security Server;

17

Figure 2.3. OS Bypass.

2. spoof the Security Policy; and

3. spoof the security labels.

The first attack is shown in Figure 2.3. After successfully mounting this attack the
adversary implements a policy of the adversary’s own choosing, including the policy that
says that anyone can access anything.

The second attack involves changing the Security Policy, stored in a file. And the third
attack involves changing the security labels of an object, making the object readable by
anyone, for example.

A fourth attack, at least on SE Linux, focuses on the “security module,” as explained
here. When SE Linux was presented to Linus Torvalds at the 2.5 Linux Kernel Summit,
Torvalds reportedly balked at the limitation that a single kind of Security Server represented.
He suggested instead a “security framework.” That is, he suggested that the Security Server
also be flexible – defined in a file, in the same way that a Security Policy is defined in a
file. As a result the Linux Security Module (LSM) architecture project began [27]. This
architecture called for replacing the calls to the Security Server, at the control points in the
kernel, with “hook functions” that would be defined by an LSM. Currently there are six
LSMs available, including one for “SELinux.” The LSM capability provides more flexibility,
as well as providing another avenue of attack: spoof a legitimate security module.

There appear to be two general techniques to prevent bypass in Flask. The first is

18

referred to as “trusted path,” meaning that between the Client and the Security Policy
implemented in the Security Server there is only trusted code which is software in the
“trusted code base” (TCB). The second consists of requiring code in the TCB to be used
to change a Security Policy file, a security label, or a security module.

The TCB is necessary, since, as Loscocco et al. argue, the notion that “adequate security
can be provided in applications [such as editors, compilers, and loader/link-editors] with the
existing security mechanisms of mainstream operating systems” is a “flawed assumption”
[29]. To attempt to do so results in a “fortress built upon sand,” to use Baker’s metaphor
[5]. The problem is not so much the rain and the floods and the winds of Biblical metaphor,
washing away the sand and leaving the fortress to topple over on its own. The problem is
that the adversary can easily dig underneath the walls, effecting bypass.

In this Chapter we have reviewed three levels of distributed software for mobile code,
exemplified by the JVM, the D’Agents code, and trusted operating systems. We have noted
the persistence of the issue of trust, noteworthy by the extent to which Flask goes to attempt
to circumvent it.

19

Chapter 3

Specialized Hardware Solutions

This chapter investigates methods for securing mobile code using specialized hardware tech-
niques. The camp that believes special hardware is necessary points out that current com-
puting architectures are “inherently insecure” because they are designed to execute ANY
arbitrary sequence of instructions and are therefore subject to subversion by malicious code.
By careful modification of current architectures, we can develop a cryptographic method
of “tamper-proofing” code over a large portion of the software/hardware life cycle. This
method culminates by decrypting/authenticating each instruction within a physically pro-
tected CPU, thereby protecting against subversion by malicious code.

Figure 3.1. The goal is protection over a major portion of the
software life cycle.

By moving trust around, cryptographically, the “trusted volume” that is required to be
physically secure from subversion by an adversary can be made small, yet the ability to
detect subversion and prevent execution of malicious code can be maintained. If the code
intended to be mobile is encrypted and signed at its origin (within a trusted facility), and
is decrypted and authenticated within a single integrated circuit containing the CPU, then
the physical anti-tamper techniques can be applied to the single integrated circuit, rather
than to a larger volume. It may be easier and less expensive to secure the smaller hardware
volume than a larger volume.

Both encryption and authentication techniques must be applied to the code in order
to protect it while outside the physically protected volume of the secured processor. En-

20

cryption is required to prevent reverse engineering of the code and to prevent bypass of the
execution/access control mechanism. Authentication is required to assure the integrity of
the code to be executed.

We define Faithful Execution (FE) as a software protection that begins when the software
leaves the control of the developer and ends within the trusted volume of a target processor.
That is, FE provides program integrity, even while the program is in execution. One method
for providing FE involves the concept of a trusted kernel. However, trusted kernels require
a lengthy accreditation process and do not protect the integrity of execution for processes
that are being subjected to certain attacks (e.g., stack overflow attacks).

What is needed is a way to provide run-time code and data integrity checking that
allows detection of tampering and provides confidentiality of the instruction stream. The
method described here is to cryptographically “shrink-wrap” the program in a trusted
verification facility, and to decrypt and authenticate the “shrink-wrapped” program within
the protected volume of the integrated circuit containing the CPU itself. Properly designed
and implemented, this method provides protection over a large portion of the software life
cycle. This approach attempts to protect the confidentiality, authenticity, and integrity of
code and data from the moment it is “shrink wrapped” at a trusted facility, through the
distribution, storage, and loading phases, and up to the point where instructions or data are
fetched from memory by the CPU. This method attempts to assure execution correctness
or “faithful execution”, presuming the correctness of the initial code and data has been
validated.

The cryptographic “shrink wrapping” of the mobile code consists of encrypting and
signing the instruction stream in a manner that authenticates the sequence of instruc-
tions (as well as the instructions themselves). This protected mobile code should be “un-
shrinkwrapped”, as each instruction is fetched for execution, as close as possible to the
execution process within the CPU. This could conceivably be done in protected hardware
or in specially protected software. If this were performed in software, the program that
decrypts, authenticates, and executes (perhaps in a virtual machine) the mobile code must
be protected against reverse engineering by software obfuscation techniques which substi-
tute for the “physically protected volume” that can be achieved in hardware. In addition,
the decryption (and decryption key variables) must be protected against being used sepa-
rately to decrypt the mobile code so that the code can not be executed by a non-decrypting
(virtual or real) machine.

Key management for this technique can be further developed using public key or other
techniques. The minimum requirement for securing mobile code is that the cryptovariables
and means used to encrypt and sign the mobile code and to decrypt and authenticate the
instruction stream at the point of execution must be protected from the adversary.

The following section describes a method of “unshrinkwrapping” and execution of mo-
bile code in hardware. To expedite this research, the decryption, authentication, and execu-
tion is designed into reconfigurable hardware (a Field Programmable Gate Array (FPGA)
or Programmable Logic Device (PLD)). The hardware designed into this FPGA can also
be implemented in a “non-reconfigurable” Application Specific Integrated Circuit (ASIC).
Physical anti-tamper techniques (that could be applied to such an FPGA or to an ASIC
containing these functions) are beyond the scope of this research project.

21

3.1 FPGA Implementation

1 The FE hardware architecture consists of three major components; the cryptographic Pre-
processor, the interconnecting glue logic, and the Target processor as shown in Figure 3.2.
The Target CPU, executes the desired instruction stream while the other, the Pre-processor,
controls the Target’s access to memory and performs the FE function.

Figure 3.2. Major components of FE hardware architecture.

We have built a prototype FE engine in hardware using the latest generation of FP-
GAs. This specific implementation was developed using Altera’s NIOS configurable soft-core
embedded processor [35]. The NIOS processor offered many advantages to this project, in-

1Some of this work leverages work done in another LDRD called “Cryptographic Assurance of Execution
Correctness”

22

cluding the ability to compile two Altera NIOS CPUs into a single Stratix 1S10 FPGA
device.

Altera provides a very flexible bus architecture for NIOS called Avalon [3], with which we
were able to implement numerous fully configurable ports. These ports were used to trigger
interrupts instrumental in responding to instruction read and data write requests from the
Target processor. Both the Pre-processor and the Target processor have separate Avalon
buses. The Avalon bus is a parameterized interface to external logic blocks implemented
as a switching fabric by Altera’s SOPC Builder system development tool. The two Avalon
buses are interconnected by glue logic that handles timing and signal handshaking.

The flexibility provided by the NIOS core was invaluable in the rapid prototyping of the
FE processor. For example, we were able to implement the Pre-processor in software using
one of the NIOS CPUs. As a prototype this arrangement provides significant flexibility,
however for a more robust implementation that would execute faster, this function could
later be replaced with special purpose logic written in a hardware description language.

The current implementation of the Pre-processor takes advantage of features in the
NIOS CPU to improve performance by the use of custom hardware compiled instructions.
We have compiled the processing intensive cryptographic functions that are required to
perform the more complex bit and nibble manipulations into custom instructions that use
the specialized hardware. The result was much faster executing cryptographic functions
when compared to software implementations.

The software to decrypt and authenticate instructions and data, written in C, runs
on the Pre-processor as a small kernel consisting of a “while loop” and Interrupt Service
Routines (ISRs) to respond to read and write requests from the Target processor. The
Target processor is a NIOS soft-core processor having 2K bytes of ROM, which contain a
boot program called GERMS and a memory mapped, designer defined interface to the Pre-
processor. The GERMS monitor is a small code segment provided by Altera that permits
loading and execution of operating software. The designer defined interface includes address,
data, and control lines. There are separate read and write data ports. The designed interface
connects directly to the glue logic. All instructions and data are passed between the two
NIOS processors via the designed interface and interconnecting glue logic.

The prototype operates as follows. Only the Pre-processor has access to application
memory. The Pre-processor software and the Target processor distribution file are loaded
into their respective memory locations using the Pre-processor’s serial port. The Target
processor boots its GERMS monitor (located in a local memory), and begins to accept
commands via its serial UART. The Pre-processor software is started, enabling interrupts.
An external command to the Target processor starts execution at the address of the dis-
tribution file. A request for the first instruction is sent to the Pre-processor. The Target
processor waits for the Pre-processor to fetch and decode the requested instruction.

Each time a Target CPU application runs, several events occur. The application starts
when the Target processor requests its first instruction from memory via the Pre-processor.
This results in the address being latched and a read interrupt request being submitted to the
Pre-processor. The Pre-processor places the Target CPU in a wait state and interrogates
the application’s header segment to determine the cryptographic context and retrieves the

23

correct keys from a secure memory location within the Pre-processor. After the first instruc-
tion request, the cryptographic context for that occurrence of the application is established
and is not repeated for following instruction requests from that application occurrence. A
new cryptographic context would necessitate a fresh context lookup.

The Pre-processor, upon receiving the read request, executes the ISR that fetches the
instruction from memory. The ISR then performs any required decryption and authenti-
cation. Providing that the instruction is authentic, the Pre-processor passes the decrypted
instruction back to the Target, again through the intervening glue logic, and removes the
wait state. The Target then executes the instruction and increments its program counter
to request the next instruction through the Pre-processor. Should the authentication check
fail, the Pre-processor withholds passing the instruction on to the Target, and performs an
exception handling process.

In this way, the Pre-processor/glue logic combination appears to the Target processor as
a memory device with a variable cycle wait state. The application memory though, is not
directly accessible by the Target processor, rather is only available through interrupt service
requests to the Pre-processor. Data that the Target processor writes to memory is handled
in a similar manner, but the data is encrypted before being written by the Pre-processor to
memory, along with an authentication word.

3.2 Software Shrink Wrap Process

Faithful Execution protects software through a cryptographic process. The application
of this protection, or the “shrink wrap” process protects both code confidentiality and
code integrity by encoding and packaging the software at the instruction level. Individual
instructions or sequential chains of instructions are encrypted to maintain confidentiality.
Additionally, the encoding process includes redundant instruction information so as to allow
authentication of each machine instruction and the execution order of the instructions.

After a trusted facility develops and certifies a piece of software as correct, it encodes the
software for execution on the FE hardware. The encoding process repackages the software
into five segments, that is, a software header, the encrypted software (instructions and
data), the authentication data, initialization vector data, and Pre-processor instructions, as
shown in Figure 3.3 and described below.

Implementation of FE permits several variations in its design. Both stateless and stateful
instruction encryption as well as several encryption algorithms are possible. Additionally, it
may be desired that different parts of a piece of software be protected in a different manner.
In particular, the handling of a piece of software’s code segment and data segment may be
different. The shrink wrap header defines these variables to the Pre-processor as well as the
memory size and the relative memory locations of the encoded software segments.

Our initial implementation of the FE hardware design uses the same 4-bit to 4-bit
ECB encryption/decryption function as used with the Java VM implementation (extended
through 8 slices for encryption of 32 bit words), again as a placeholder for a more robust

24

Encoded Code:
Header

Certified ⇒ Encrypted Instructions &
Code Data

Authentication Data
(Instructions
& Data) Initialization Vector

Pre-processor
Instructions

Figure 3.3. Shrink Wrapped Code Layout

cryptographic transform. This 4-bit ECB transform is sufficient for proof of concept. For the
stateless FE implementation, application of this transform to various combinations of the
instruction value and the instruction address provide the basis for deriving the encrypted
instruction and the instruction authentication. We have developed several stateless and
stateful schemes, using the application of the ECB transform, that employ between one and
six 64-bit keys to produce the results for the encrypted data field and authenticated data
field of the shrink wrap process. These schemes are being evaluated in terms of security
robustness, performance, and complexity.

All of the information in memory consists of “values.” We partition the universe of
values into instructions and data. We further partition data into constants (values that can
be stored in read-only memory) and what we call “variables” (values that must be stored
in writable memory and which includes the stack and the heap).

The access pattern for instructions is always sequential. That is, we presume that if
the current instruction is at address i, then the next instruction will be at address i+1
(except for instruction branches, of course). The access pattern for data - both constants
and variables - is random.

Stateless protection can be used for either access pattern. Stateful protection is difficult
and/or inefficient when applied to non-sequentially accessed data.

Writable data memory is subject to replay attacks since the value stored in any given
location can change over the lifetime of the program. Read-only memory, on the other
hand, is not subject to such attacks.

The initialization vector data segment and the Pre-processor instruction segment are
necessary to handle the encryption and authentication of code sequences in a stateful FE
implementation. The basis for stateful FE is “chaining” which is the cryptographic asso-
ciation of one instruction Pi with some other instruction Pj which in turn is associated
with yet another instruction Pk to form a chain of instructions that are normally executed
sequentially. The cryptographic mode we use as the basis for the association between in-
structions is Plaintext Block Chaining (PBC) [24], which requires an initialization value
(IV) for the first instruction of a new sequence. At each code branch or jump instruction,
the instruction chain sequence is broken, and a new IV is required. This data is stored in

25

the IV data segment.

Stateless protection implies that the cryptographic computations to decrypt and au-
thenticate a given memory value are the same, regardless of the memory values previously
processed. Therefore, in order to provide protection for the integrity of the sequence of
instructions, the address of the memory value is incorporated into our stateless crypto-
graphic processing. This complicates the authentication of relocatable code (in which the
logical address as seen by the program is different from the physical address as seen by the
underlying hardware). Since the processing of relocatable base addresses, etc. would be
required to resolve such “address anchoring”, our prototype only applies stateless protection
to non-relocatable code.

Stateful protection implies that the cryptographic computations to decrypt and authen-
ticate a given memory value depend on the successful decryption and authentication of
all previously sequentially fetched values (since the most recent branch synchronization).
In order to prevent the interchange of blocks of instructions (between branch targets, for
example), the IV required to decrypt and authenticate the next block is only obtained by
successful authentication of one of the appropriate previous instruction blocks. While this
mode requires additional memory (the initialization values for each branch target), and
requires identification of all branch targets for proper placement of the IV information, it is
more easily applied to relocatable code and provides some additional independent protection
for the instruction sequence.

Our prototype has been designed to implement both stateless (address anchored) and
stateful decryption and authentication of instructions, and the stateless decryption and
authentication of data, in order to evaluate the tradeoffs of robustness against subversion,
processing performance, and implementation complexity. Now that the implementation
details of these modes are established, we are carefully analyzing these tradeoffs, and eval-
uating the resulting implementations to gain insight into the relative robustness of these
modes against subversion.

We have developed PC software that performs the encoding (shrink wrapping) upon
the certified binary code. In our case, the binary code is an embeddable application we
developed for the NIOS Target CPU. We develop the Target CPU application in a NIOS
development environment, then move the binary file to a PC. There we execute the shrink
wrapping program to cryptographically seal the binary application for transport to the FE
environment.

3.3 Future Specialized Hardware Work

We have shown how mobile code can be computed securely in specialized hardware by using
cryptographic assurance of execution correctness, in which decryption and authentication of
the instruction sequence occurs only within a small, protected hardware volume. We have
explained a method which cryptographically seals a piece of software at a code testing and
certification facility, keeps it secure by distributing it in the encrypted form, and decrypts
and authenticates it as it is being executed. We also described the related shrink wrap
process to seal the certified mobile code for use in a specialize hardware environment.

26

Other work (not documented here but in reference [8]) describes a software prototype (of
Cryptographically Assured Computation) in Java, where a Protection Engine was inserted
between the Java Virtual Machine and the data store. While demonstrating some of the
principles required, this software implementation lacks the obfuscation necessary to assure
against reverse engineering of the decryption, authentication, and execution functions, nor
to assure that the decryption function can not be used to separately decrypt and use the
protected mobile code.

Ongoing work (if funded) will involve “black hatting” the hardware prototype to verify
the security of the system and demonstrate proper operation. Additional work should be
done to measure and optimize the instruction processing performance overhead incurred by
several variations of the decryption and authentication processes. This technique should be
experimentally applied to explore applications that could benefit from Faithful Execution
and that can tolerate and justify the instruction processing overhead of the cryptographic
operations. Future improvements could include inserting stronger cryptographic algorithms,
more flexible modes of authentication, and faster hardware implementations to improve
performance. Of great interest is the application of software obfuscation techniques to
remove the requirement for the hardware based “protected volume”.

27

Chapter 4

Software Solutions Requiring
neither Specialized Software nor
Hardware: Obfuscation Techniques

In this and the remaining chapters we examine methods and issues related to the notion
of securing mobile code using neither specialized software nor hardware. The software
must run on an adversary’s computer, putting them in complete control of execution. The
provider must assume that the adversary is able to run, stop, and restart the software at
any point, reverse engineer components of the system, and see and manipulate all data.
For software that must run on traditional hardware, an adversary can reverse engineer the
entire program.

We will focus on using obfuscation to render an entire program or a data segment
on which a program depends incomprehensible. The hope is to prevent or at least slow
down reverse engineering efforts and to prevent goal-oriented attacks on the software and
execution. The field of obfuscation is still in a state of development. We begin by giving a
brief survey of important ideas in the field. We first present the top level of a taxonomy by
Collberg1[12] that categories sample obfuscation techniques. We use this to present several
such techniques, as well as to provide structure for several obfuscation approaches that
follow our discussion of Collberg’s taxonomy. More examples of obfuscation can be found
elsewhere [1].

4.1 Collberg’s Taxonomy

Collberg presents a taxonomy of obfuscation techniques, each of which is referred to as a
“transformation.” The top level of the taxonomy consists of four categories of transforma-
tions: layout, control, data, and preventive. The first three categories can be intuitively
defined based on the examples presented below. The last category is intended to “make

1For ease of reference we refer to Collberg, Thomborson, and Low’s paper as though Collberg were the
sole author.

28

Notation Meaning Examples
A predicate. In Java, a boolean expression. If (P) ...

P,Q,R In C this is an expression that evaluates to 0 If (Q) ...
(meaning false) or non-zero (meaning true). If (R) ...
A predicate that always evaluates to true,

PT , QT , RT independent of the values of any variables If (1) ...
and functions used in the predicate.

A predicate that always evaluates to false,
PF , QF , RF independent of the values of any variables if (0) ...

and functions used in the predicate.
int i, j;

P ?, Q?, R? A predicate that sometimes evaluates to read (i, j);
true and sometimes evaluates to false. if (i > j) ...

int i = 0, j = 1;
< name ><=value> A variable whose runtime value is known i=0

at compile time to be <value>. j=1

S<integer> A series of statements, the precise nature S1;
of which is not important S2;

Table 4.1. Notation

known automatic [e.g., by a deobfuscator] techniques difficult” ([12], page 24).

We present one example of each category in Table 4.2 below. In Table 4.1 we explain
the notation used in Table 4.2. The examples in Table 4.2 are presented in a high-level
pseudo-code-sometimes to look like C and sometimes to look like Javathereby sidestepping
advanced issues involving compiler optimizations and decompilers. All of the examples are
from Collberg [12] except for the first.

Collberg considers that the “quality” of a given obfuscation transformation is a function
of “potency,” “resilience,” and “cost.” Potency is a measure of the strength of a given
transformation against a human deobfuscator. Resilience is a measure of the strength of
a given transformation against an automated deobfuscator. Cost is a measure of both the
anticipated increased execution time and increased code size of a given transformation (and
not the time or space required to perform the obfuscation).

4.2 Sander & Tschudin

Another technique for obfuscation is what is known as “secure function evaluation” or
“computing with encrypted functions.”2 This is a data transformation in Collberg’s scheme.

2There are generally two types of problems involved with the protection of data as opposed to function.
One type, known as “secure multi-party computation” or “hiding data from an oracle,” is typified by Yao’s
“Millionaires Problem” [52]: two millionaires want to find out who is wealthier but do not want to reveal to
the other their wealth. The other type of problem is known as “computing with encrypted data” [39] (see
also [1]) and uses homomorphic encryption schemes (see Chapter 6.

29

Transfor- Example
mation Before After

L
ay

ou
t

Sc
ra

m
bl

e
Id

en
ti

fie
rs

int i, j, key; int m1, function5, m2;

C
on

tr
ol

[C
on

ve
rt

]r
ed

uc
ib

le
to

no
n-

re
du

ci
bl

e
flo

w
gr

ap
hs

do
{

S1;
} while (P);

1: if (Q?)
{

2: S1;
if (P) goto 3;
goto 4;

}
else
{

3: S1;
if (P)

{
if (R?) goto 2;
goto 1;

}
}
4:

D
at

a

Sp
lit

va
ri

ab
le

s

bool a, b;
a = true;
b = false;
if (a) ... ;
if (b) ... ;

short a1, a2, b1, b2;
a1 = 0; a2 = 1; // a = true;
b1 = 0; b2 = 0 // b = false;
// or: a1 = 1; a2 = 0; // a = true;
// or: b1=1; b2=1; // b=false;
int x = 2*a1+a2;
if ((x==1) —— (x==2))...; //
if(a)
if (val (b1, b2))...; // if (B);
int val (int i, int j)
{

if (i ==0)
return (j);

else
return ((+1) % 2);

}

30

Transfor- Example
mation Before After

P
re

ve
nt

at
iv

e

U
se

op
aq

ue
pr

ed
ic

at
es

w
it

h
si

de
eff

ec
ts

{... S1; ... S2; ... }

int k = 0;
f();
{

k += 214748367;
// 2147483647 = 231 − 1
return (PT)

}
g()
{

k -=2147483647;
return (PT)

}
...
{ ...

if (f()T)
S1;

if (g()T)
S2;

...
}

In the above example, if the adversary removes one but not both of the predicates,
k will overflow and crash the executable, assuming that an int is stored in
32 bits using 2s complement

Table 4.2. Example Transformations (from Collberg’s taxon-
omy)

31

For example the scheme that Sander & Tschudin [40] present uses additive and mixed
multiplicative homomorphic properties of the Goldwasser-Micali probabilistic encryption
scheme. That is, if we let “E(x)” denote the encryption of data item x, then there are
efficient algorithms to compute E(x + y) given E(x) and E(y) and to compute E(xy) given
E(x) and y. These properties enable Sander & Tschudin to protect computations that use
polynomials. The scheme is restricted to polynomial/rational functions. Loureiro notes
that whereas obfuscation in general lacks a theoretical foundation this approach applies to
“more limited models such as circuits” and they have a “large complexity associated with
each bit of output” ([22], page 27). We discuss this approach in more detail in Chapter 6.

4.3 Wroblewski

The approach presented by Wroblewski [51] operates on assembly language code and uses
four obfuscation techniques:

1. reordering of instructions and blocks,

2. replacement,

3. simple insertion, and

4. complex insertion.3

The first and third techniques fit in Collberg’s control category, with a little stretch.
The other two techniques are not explicitly in Collberg’s taxonomy.

Instructions and blocks that share no dependencies can be reordered. If dependencies
are shared, then additional control structure will need to be added in the form of jumps to
preserve the original ordering. Code that has no relevance to the current context can always
be inserted. This is simple insertion. If for a sequence of statements there is an equivalent
sequence, then that equivalent sequence can replace the original one. For example, the
following two code fragments (from [2])

temp = a;
a = b;
b = temp;

and

a = a ⊗ b;
b = a ⊗ b;
a = a ⊗ b;

where a, b, and temp are all of the same scalar type and ⊗ denotes xor, are functionally
equivalent but not equivalent in terms of the ease with which the general programmer will
understand that they both swap values.

3Wroblewski does not name his two insertion types.

32

If the effect of the code on the current context can be later undone, then code that
changes the current context can also be inserted, along with, at some other point in the
program, the code that will undo that addition. This is complex insertion.

Note that Wroblewski presumes more analysis on a larger scale than does Collberg.

4.4 Wang

The approach presented by Wang [16] uses two techniques:

1. “flattening”4 and

2. aliasing.

Collberg does not include flattening in the taxonomy. Collberg includes one mention of
aliasing, but it is a severe subset of the technique Wang uses.

Flattening, as Wang describes it, is the process of converting the control structure of a
procedure to a “universal” structure, as shown in Figure 4.1 (taken from Wang, Figure 4.4,
page 66).

while ()
{

switch ()
{

< procedure body >

}
}

Figure 4.1. Universal Control Structure

The blocks5 of the procedure become the statements of the switch. The statements that
are at the same time both inside of the while statement and outside of the switch statement
control the variable that determines which statement in the switch is executed next. For
example, consider the procedure shown in Figure 4.2.

An equivalent universal structure for the code in Figure 4.2 is shown in Figure 4.3.6

4Not to be confused with Collbergs array flattening.
5A “block” is a sequence of instructions for which both of the following two conditions hold: (1) no

instruction in the sequence is the target of a jump except possibly the first instruction, and (2) there is no
jump instruction in the sequence except possibly the last instruction. That is, blocks are defined such that
(a) jump targets, if any, are always at the beginning of a block and (b) jump instructions, if any, are always
at the end of a block.

6Wang uses goto statements instead of a switch in this example.

33

int a, b;
a = 1;
b = 2;
while (a < 10)
{

b = a + b;
if (b > 10)

b - -
a++;

}
use b;

Figure 4.2. Sample Procedure

Note that the control-flow in Figure 4.2 has been converted into the data-flow in Figure
4.3. The code in Figure 4.3 is not difficult to decipher because the values assigned to swVar
are hard coded. However, consider replacing statements such as “swVar = 2;” with “swVar
= g[g[5] +g[g[23]]];” where g is a global integer array whose values are changed every so often
during execution. (And now imagine adding several levels of indirection, as in g[g[***i]],
where *i happens at the moment to be g[2] and **i happens to be &i.)

The other technique that Wang uses is aliasing: using more than one name for the same
memory location. In general resolving aliases is undecidable. Several examples are shown
in Figure 4.4.

4.5 Hohl

In this early paper Hohl [22] suggests the use of the following techniques:

1. “variable recomposition,”

2. “conversion of control flow elements into value-dependent jumps,” and

3. “deposited keys.”

Variable recomposition is what Collberg would call “split variables,” a data transformation.
The second approach approximates what Wang would call “flattening.” The third approach
gets values at runtime from some external source, thereby hindering static analysis. For
example, the code could fetch the values that determine control flow. Riordan & Schneier
use a similar approach in their “clueless” agents [37].

34

int swVar = 1;
while (swVar < 7)
{

switch (swVar)
{

case (1):
a = 1; b = 2;
swVar = 2; break:

case (2):
if (!(a < 10)) swVar = 6;
else swVar = 3;
break;

case (3):
b = b + a;
if (!(b > 10)) swVar = 5;
else swVar = 4;
break;

case (4):
b - -; swVar = 5;
break;

case (5):
a++; swVar = 2;
break;

case (6):
use (b); swVar = 7;
break;

}
}

1:

Figure 4.3. Universal Structure Equivalent of Figure 4.2

35

Global and local reference aliasing:
int *i = ...;
main() { f(&i); ... }
f (int **j) {

int *k = *j;
<k and i now point to the same location>
...

}

Parameter aliasing:
f (&i, &i);

Aliasing through return values:
f () {

int *i = ..., *j = ...;
j = g (&i);
<i and j now point to the same location>
...

}
int *g (int **a) { return (*a); }

Aliasing through side effects:
f () {

int *i = ..., *j = ...;
g (&i, &j);
<i and j now point to the same location>
...

}
g (int **a, int **b) { a = b; }

Figure 4.4. Alias Examples

36

4.6 Ng

Ng [34] uses one technique: “intention obfuscation.” This technique does not appear in
Collbergs taxonomy.

Ng operates within the context of agents and he is interested in the “intention” of the
code: what is the information that the owner wants to know? The easiest way to understand
what Ng is talking about is to give an example. Consider the shopping agent shown in very
high-level pseudo-code in Figure 4.5.

What is the price of your apples?

Figure 4.5. Shopping Agent

We presume that the “intention” of the agents owner (i.e., what the owner of the agents
wants to know) is self-evident from the code in Figure 4.5, that the price of apples is really
the information that is wanted. This intention could be a little obscured – or, as Ng would
say, the entropy would be slightly increased - if the agent owner sent the agent shown in
Figure 4.6 instead.

What is the price of your apples and
the price of your oranges?

Figure 4.6. A Second Shopping Agent

The intention would be further obscured if the owner sent agents as shown in Figure 4.7 to
additional stores, stores from which the agent owner would not consider buying (perhaps
their quality is low).

What is the price of your pears and
the price of your grapefruits?

Figure 4.7. A Third Shopping Agent

Even if an adversary were to receive the results of all of the agents, that adversary would
still not be able to determine the intention of the agent owner.

Note that Ng is operating at a level above the code, at what he might call the “intention”
level.

37

Chapter 5

White-Box Obfuscation

In this chapter we focus on an obfuscation technique different from the ones described in
the previous chapter called “white-boxing”. A system that is intended to be run on a
malicious host is, by definition, not a black box because the adversary is able to view the
program’s execution as well as any intermediate results that are generated during compu-
tation. The white-box attack context was introduced by Chow et al. as a setting where the
adversary is allowed to not only make such observations about the software, but is also able
to examine and alter the software at will [11]. The system they implement in this context
as a white-box program is a DES encryption algorithm. Ideally, a white-box encryption
function would be so difficult to analyze that an adversary would be inclined to resort to
a plaintext/ciphertext pairs attack, much as if the white-box implementation were a black
box. Their implementation of DES does lend itself to some analysis, however, and a key can
be extracted easily. We have built upon their ideas to create a similar white-box version of
DES that is much less vulnerable to direct analysis.

One possible use for white-box cryptography would be the replacement of content en-
coding schemes such as the Content Scramble System (CSS) used to protect DVDs [13]. A
chip could be made to perform decryption of DVD content using a white-box DES decryp-
tor without revealing the encryption key, which an adversary would like to use to generate
additional playable DVDs. As with CSS, such a system would still be vulnerable to du-
plication of raw data images, but it would be far more difficult for a criminal to generate
properly encoded alterations or to extract the quantity of information needed to create a
content player without the original content controls.

A second application for white-box cryptography of this sort would be in authenticating
communications in low power processors in wireless broadcast situations. In such a setup,
it would be desirable if, for example, directives broadcast from some central authority could
be authenticated prior to being carried out. The obvious approach would be to sign the
directives with the central authority’s private key, and require that the nodes verify the
signature before processing the command. However, in many situations, the nodes may
not be powerful enough to verify the signature efficiently. With such low-power nodes,
we would prefer to be able to use a symmetric-key message authentication code to verify
the authenticity of the sender. Unfortunately, if a MAC is used, an adversary need only
compromise a single node and recover the shared symmetric key in order to pose as the

38

central authority and issue counterfeit directives. Using white-box cryptography, we can
hide the key from the adversary in a “verify-only” version of the code, which would prevent
the attacker from issuing any counterfeit directives.

Chow et al. developed a white-box encoding for DES[17], however, their approach can
be readily applied to other block ciphers such as Rijndael [14, 10]. The process of encoding
reduces DES to small table lookups and then systematically reindexes and delinearizes those
tables. In their publication of a white-box DES they admit vulnerability to a statistical
bucketing attack on their encoding [11]. They address this vulnerability by augmenting DES
with a nonstandard input and output permutation, but this makes their implementation a
non-DES cipher. This may be a reasonable approach for many DRM applications but it is
not appropriate for those requiring the use of standard encryption schemes. Jacob et al. [23]
also performed some analysis of this DES encoding and described a fault-injection attack
using differential cryptanalysis that reveals the DES key. This attack requires matching
encodings of DES encryption and decryption, while most DRM applications would only
include one or the other.

We have improved upon the work of Chow et al. and have implemented a white-box
DES that is resilient to both the statistical bucketing attack described by Chow et al. and
the differential cryptanalysis attack of Jacob et al. We have also implemented a modified
statistical bucketing attack against Chow et al.’s DES that requires fewer encryptions by the
target function than either of these prior attacks and requires only access to a white-box DES
encryption function. Our alterations protect against this new attack as well. In addition,
our implementation does not rely upon the input/output permutations described by Chow
to protect against the statistical bucketing attack. Because of this, our implementation
actually computes DES, and can interface with a standard implementation of DES without
requiring knowledge of the input/output permutations. Our white-box DES is comparable
in time and space requirements to its predecessor. We have profiled our implementation and
believe that while it is substantially slower than a typical DES, the cost is appropriate to the
threat model, the performance is acceptable for some uses, and a number of optimizations
may still be made.

This chapter is organized as follows: Section 5.1 contains a summary of the creation
of an instance of white box DES, which is provided for the reader who does not need
the detail of Sections 5.2 and 5.3, but may need some background before moving on to
the later sections of the chapter. A detailed description of white-boxing techniques is
presented in Section 5.2. This is followed in Section 5.3 by a more precise look at how these
techniques were applied to create a white-box implementation of DES. Section 5.4 reviews
two known attacks against Chow et al.’s version of white-box DES, with an analysis of how
our implementation prevents these attacks contained in Section 5.5. Section 5.6 discusses
the use of these techniques in creating white-box versions of triple-DES and AES. Finally,
Section 5.7 discusses optimizations that could be made to our implementation to yield
smaller, faster versions.

39

Figure 5.1. Decomposition of an affine transform

5.1 Overview of White-Box DES

Chow et al. and Jacob et al. described a white-box encoding of DES that is the basis for
the implementation presented in Section 5.3. To provide motivation and context for the
more in-depth descriptions that follow (or as review for those familiar with prior work), we
briefly present the encoding of DES here. Definitions and details for specific elements of
the white-box encoding process can be found in Section 5.2.

DES is usually described as a sequence of permutations, s-boxes, and xors on bit vectors.
The permutations and xors are linear and can be represented by affine transformations
(ATs), but because the s-boxes in DES are nonlinear, one can not represent DES as a single
AT. We can, however, represent DES as alternating ATs and s-boxes. Chow outlines a
process for re-representing an affine transformation with functionally equivalent code and
data that cannot easily be used to recover the original AT. Once we represent an instance
of DES (i.e., a key-specific DES) with ATs and s-boxes, we can prevent recovery of the ATs
and simultaneously conceal the structure of the s-boxes to prevent recovery of the key that
was used to generate them.

To represent DES permutations and xors for each round as a single AT, the s-box output
must be accompanied by the original left and right input halves, Lr and Rr, for round r. This
information is brought forward in parallel using 8-bit to 8-bit (8× 8) T-boxes (obfuscated
and key-impregnated s-boxes) that produce Lr, Rr, and the s-box results. Rr is included
in the T-box output as the 16 duplicate bits passed into the s-boxes by the expansion
permutation (EP), and 16 additional replicated bits of s-box input. The T-boxes allow the
remaining DES components to be represented as matrix operations that are combined into
a single AT in each round. In this manner, all of DES can be represented by alternating

40

ATs and T-boxes (Figure 5.3).

Chow et al. used a technique of matrix decomposition (Figure 5.1) to implement I/O-
block encoding of affine transformations. The technique divides each AT, Mx + v, into
independent equations that compute subvectors of the original result, y. Each subvector
in the output is computed using a copy of the input vector, x, which is also divided into
subvectors. Any subdivision of the input and output vectors will work. For clarity, Figure
5.1 depicts a uniform division of bit vector input into four a-bit vectors, and the creation of
the output from five b-bit vectors. The first tables are 2a-element multiplication tables with
b-bit entries. The remaining tables are addition tables and have 22b b-bit entries, so tables
that add two 4-bit values have 256 4-bit entries, while a table that adds two 8-bit values
has 65,536 8-bit entries. We chose to divide input into 8-bit subvectors to match the 8-bit
output of the T-boxes, and we initially divided the output into 4-bit subvectors to keep the
addition tables from growing out of hand.

The delinearization step referred to by Chow et al. and Jacob et al. prevents an adversary
from viewing the original contents of each table. Tables are delinearized by creating random
permutations to rename their contents; for example, the elements of a table of 8-bit values
would be renamed with a permutation of [0 . . .28 − 1]. The inverse of this permutation
would be used to reindex the following table, which would subsequently have its contents
renamed. For a system like DES, which can be represented entirely with ATs and table
lookups, this process can be carried out on the entire implementation once the ATs have
been tabularized.

Because the output of a table is delinearized, it is not possible to split the elements of
the table into separate pieces without delinearizing the pieces separately. For this reason
the block sizes available to us had to be divisors of eight. The smallest representation of
the 96 × 96 matrices used to represent the rounds of DES would come from a 6 × 2 I/O-
block encoding of the matrices, but such a division would have reduced the effectiveness of
delinearization. For security, obfuscated blocks associated with the T-box input and output
need to be as large as can be represented efficiently.

5.2 An Introduction To White-Boxing Techniques

How white-boxing is done can seem like a “black art” to those who are unfamiliar with
the techniques. The existing literature on the subject is difficult to understand, and in
some cases the available versions of the seminal papers contain errors in the details of the
techniques and how they are applied. Furthermore there is no “compiler” or algorithm
for mechanically converting an arbitrary function to its white-box equivalent. Instead, the
individual techniques must be understood, and then one must determine when and how
they can be applied to protect a given function.

The following sections are an attempt at providing a more accessible introduction to
white-boxing techniques and terminology. In particular, Section 5.2.2 will describe the
terminology and techniques of white-boxing, and Section 5.3 will show how those techniques
can be used to protect a round of DES.

41

The terminology used here will follow closely that of [11].

5.2.1 White-Box Encoding Terminology

The primary goal when white-boxing is to encode a transformation so that some charac-
teristic(s) of the transformation are hidden, despite an adversary’s ability to see, and even
manipulate, the internal computations of the transformation. In some cases, one may wish
to hide the behavior of the transformation, or in others (such as DES), the behavior of the
transformation may be publicly known, and one needs just to hide the key or some other
portion of the data segment.

In the case of DES, the individual elements such as the s-box lookups and the permuta-
tions can be considered transformations, as can each round of DES, and the entire instance
of DES itself. Having said that, we define encoding as follows:

Definition 1. Encoding: Let X be a transformation from m-bit inputs to n-bit outputs.
Choose an m-bit bijection F and an n-bit bijection G. Call X ′ = G ◦X ◦ F−1 an encoded
version of X . F is called an input encoding and G is called an output encoding. P ′ will be
used to denote the encoded version of a transformation P . The transformation P ′ will then
be represented as an s-box table, or a set of s-box tables.

Generally speaking, the bijections G and F will be non-linear transformations selected
uniformly from the space of appropriately sized bijections. As an example of how this
works, consider the affine transform A, implemented as an m × n matrix and an m-bit
displacement vector. While a table describing A’s input/output behavior would have 2m

entries, an adversary could determine the functionality of A by making just m + 1 queries
to its black-box representation: One query with an all zero input reveals the value of the
displacement vector, and an additional m queries, one for each of the canonical m-element
basis vectors will yield the m rows of the matrix.

However, if one chooses random bijections G and F (n and m bit bijections, respectively)
and creates the encoded A′ = G ◦ A ◦ F−1, and presents that to the adversary, then the
above attack for reconstructing the transformation is nullified (see Section 5.2.3 for a brief
discussion of the security of this encoding technique).

Typically, the inputs or outputs of a transformation will be too large to efficiently
represent in a single table1. In some cases, it is possible to encode these transformations by
using the concatenation of smaller bijections to construct a larger encoding.

Definition 2. Concatenated encoding: Consider bijections Fi of size ni, where n1 +
n2 + · · · + nk = n. The function concatenation F1 o F2 o · · · o Fk is the bijection F such
that, for any n-bit vector b = (b1, b2, . . . , bn), F (b) = F1(b1, . . . , bn1)‖ F2(bn1+1, . . . , bn1+n2)‖
· · · ‖Fk(bn1+···+nk−1+1, . . . , bn), where ‖ denotes vector concatenation. For such a bijection
F , we have F−1 = F−1

1 o F−1
2 o · · · o F−1

k .

Often, the output of one encoded transformation will be used as the input to another
1For example, some of the transformations in white-box DES have 96-bit inputs and outputs which would

require a table with 296 96-bit entries to represent.

42

transformation. When this occurs, it is vital that the output encoding of the first transfor-
mation correspond to the input transformation of the second.

Definition 3. Networked encoding: A networked encoding for computing Y ◦X , where
the output of transformation X is used as the input of transformation Y , is an encoding of
the form:

Y ′ ◦X ′ =
(
H ◦ Y ◦G−1

)
◦

(
G ◦X ◦ F−1

)
= H ◦ (Y ◦X) ◦ F−1.

Throughout this report, we will use the following notation to describe the sizes of the
inputs and output of transformations, as well as the sizes of the values being transformed:

n
mP will be used to emphasize that the transformation P takes m-bit input vectors and

maps them to n-bit output vectors. For a matrix M , n
mM will denote a matrix with n rows

and m columns, and for vectors kv represents a vector of k elements.kkI denotes the identity
function on k-bit inputs. n

me denotes some entropy transference function. That is, some
transformation from m-bit inputs to n-bit outputs such that if m ≤ n the mapping loses
zero bits of information, and if m > n then the mapping loses at most n−m bits.

〈e1, e2, . . . , ek〉 is a k-bit vector with elements ei. Concatenation of vectors x and y is
denoted x‖y. The ith element of a vector v is denoted vi, and vi..j denotes the subvector of
V containing elements of i through j inclusive, and kv denotes that v contains k elements.

ke denotes any vector with k elements, sometimes referred to as an entropy vector.

AT (affine transformation) denotes a vector-to-vector transformation, P , which can be
defined for all me by n

mP (me) = n
mMme + nd, or by P (e) = Me + d, where M is a constant

matrix, and d is a constant displacement vector. For this report, we only consider ATs over
gf(2). Note that if A and B are ATs, then so are A oB and A ◦B (where defined).

5.2.2 White-Box Encoding Techniques

Ideally, one would like to represent the transformation in question as a single lookup table,
as this format is equivalent to providing black-box access to the transformation, as all that
is known about the transformation are its input/output pairings. Unfortunately, if the
transformation is something like DES, this approach becomes infeasible, as the 64 bit input
space would require tables that are simply too large to store. To avoid this problem, one
can instead use a greater number of look-ups into a greater number of tables – similar to
DES’s use of eight 6-bit to 4-bit s-boxes instead of a single prohibitively large 48-bit to
32-bit s-box2.

Of course, this approach brings with it a dramatic decrease in the security of the system.
With a single s-box, a single bit difference in the key can affect all 32 bits of the output in
a given round (for a fixed input). With DES’s eight s-boxes, however, a single bit change
in the key can affect at most four bits of the output in any given round. Furthermore, a
single bit change in the input goes from affecting up to all 32 bits of the output to affecting
at most 8 bits of the output, so an attackers work is cut down significantly. DES, of course,

2In truth this would be a 32-bit to 32-bit s-box as the expansion permutation of DES is a monomorphism
over its 32-bit input space.

43

addresses this problem through the use of the expansion and P permutations, and by using
multiple rounds to cascade these local effects over the entire block. With white-boxing, one
needs to do more, as an adversary can observe the computation at any intermediate step.
As a result, all atomic computations need to be secured individually – one cannot rely on
a cascade of protection mechanisms.

The techniques described in the following section describe a way to build these secure
atomic computations that can be composed to provide security for a cipher like DES, even
in the white-box attack context.

5.2.2.1 Partial Evaluation

When part of the input to the transformation P is known at the time of the white-box
encoding, one can often insert the input into the transformation prior to the encoding
process. For example, given the key, one can partially evaluate the DES transformation by
replacing the standard s-boxes in DES with s-boxes that have been re-indexed according to
the appropriate round key. This set of key specific s-boxes will then be encoded using other
white-boxing techniques.

5.2.2.2 Mixing Bijections

Mixing bijections are non-sparse bijective ATs that are used to increase the dependence
of the output bits of some AT on all of its input bits. In DES, for example, when the
permutations and xor operations are represented as ATs, they have a very sparse form, and
each output bit depends only on one or two input bits. We can use mixing bijections to
hide the sparse nature of the transformation. Consider such a sparse transformation P . We
can generate a mixing bijection K, and compute J = PK−1, so that P = J ◦K. In essence,
this factors P into two new, non-sparse ATs whose output bits are all dependent on a large
number of the input bits. Note that in isolation this too can be defeated by an adversary,
by passing m + 1 values through both ATs and reconstructing the original AT as before.

5.2.2.3 I/O-Block Encoding

When encoding a transformation n
mP where m and n are large3, we cannot simply wrap P

with m and n bit bijections and present the encoding as an s-box table. This is because
the size of the resulting table will be O (n2m).

In order to make encoding such transformations practical, we use I/O-block encoding,
which divides the input and output into smaller pieces. That is, we divide the input to P

into j blocks of a bits each, and divide the output into k blocks of b bits each, so m = ja
and n = kb. Now, rather than selecting bijections m

mF and n
nG to wrap around P , we will

select a
aF1,

a
aF2, . . . ,

a
aFj and b

bG1,
b
bG2, . . . ,

b
bGk as encoding bijections for the blocks of the input

3Actually, the primary concern is when m is large, as the size of the resulting s-box varies linearly with
n. Of course, this n bit output is likely to be passed as input to another transformation, where the size of
n will be important.

44

and output. We then define FP = F1 o F2 o · · · o Fj and GP = G1 oG2 o · · · o Gk
4, and define

P ′ = GP ◦ P ◦ F−1
P as before.

To use this technique, we will still need to split the computation of the original trans-
formation P into smaller blocks. A method for doing this is presented in Section 5.2.2.7

5.2.2.4 Combined Function Encoding

Let P and Q be two transformations that can be performed in parallel. Instead of encoding
them separately, it may be better to create an encoding of P‖Q, such as G ◦ (P‖Q) ◦ F−1,
using encodings G and F that span the concatenated input and output of P‖Q. Encoding
the two transformations together this way mixes P ’s input and output entropy with Q’s,
making it harder for an adversary to determine the original functions P and Q. Note that
this is not the same as concatenated function encoding as described in Section 5.2.1, as the
encoding is applied to P and Q together, and not separately.

5.2.2.5 Bypass Encoding

It is sometimes desirable to add extra entropy to the inputs and outputs of a transformation;
to make it harder to deduce the unencoded transformation for example. We can use a special
case of combined function encoding, called bypass encoding to do this. For example, given
a transformation n

mP , we can add an extra a bits of input entropy and b bits of output
entropy by selecting input and output encodings F and G, along with an appropriate
entropy-transference function b

aE,5 and creating n+b
m+aP

′ = G ◦
(
P‖baE

)
◦ F−1.

We call b
aE the bypass component of P ′. In the case where b

aE = a
aI, we call it the identity

bypass.

5.2.2.6 Split Path Encoding

A special case of concatenated function encoding is split-path encoding. With split-path
encoding, one creates a single encoding that is actually a concatenation of two separate
encodings applied to a common input. For example, given the encoding n

mP , one can define
the new encoding n+k

m Q (ke) = n
mP (ke) o kmR (ke) for all ke and for some fixed function k

mR.
The effect of this is that if P is a lossy transformation, the resulting Q may lose fewer (or
no) bits of entropy from ke.

4In practice, we recommend also selecting the mixing bijections m
mJ and n

nK, and defining FP and GP as
(F1 o F2 o · · · o Fj) ◦ J and (G1 o G2 o · · · o Gk) ◦K respectively, in order to hide the likely sparse nature of the
smaller transformation blocks.

5Recall, by definition the entropy-transference function must be lossless, so we must have that a ≥ b.

45

5.2.2.7 Wide-Input Encoded ATs

Recall from Section 5.2.2.3 that we cannot represent encoded wide-input transformations
as single s-boxes, as the size of the required tables varies exponentially with the size of the
input to the transformation.

In order to use the I/O-blocked encoding technique, we need a way to split the compu-
tation of the transformation being encoded into reasonably sized blocks. For a wide-input
AT A, we can do this by partitioning the matrix and vector component of A, as well as the
input vector into smaller blocks, then using these blocks to subdivide the computation of A
via standard linear algebra techniques. For example, rather than performing the following
computation:

y0

y1

y2

y3

 =

M0,0 M0,1 M0,2 M0,3 M0,4 M0,5

M1,0 M1,1 M1,2 M1,3 M1,4 M1,5

M2,0 M2,1 M2,2 M2,3 M2,4 M2,5

M3,0 M3,1 M3,2 M3,3 M3,4 M3,5

x0

x1

x2

x3

x4

x5

+

v0

v1

v2

v3

We instead perform the following series of computations:

[
y00

y10

]
=

[
M0,0 M0,1 M0,2

M1,0 M1,1 M1,2

][
x0

x1

]
,

[
y01

y11

]
=

[
M0,3 M0,4 M0,5

M1,3 M1,4 M1,5

][
x0

x1

]

[
y20

y30

]
=

[
M2,0 M2,1 M2,2

M3,0 M3,1 M3,2

][
x2

x3

]
,

[
y21

y31

]
=

[
M2,3 M2,4 M2,5

M3,3 M3,4 M3,5

][
x2

x3

]

[
y0

y1

]
=

[
y00

y10

]
+

[
y01

y11

]
+

[
v0

v1

]
,

[
y2

y3

]
=

[
y20

y30

]
+

[
y21

y31

]
+

[
v2

v3

]

And our final result will be the concatenation of the two smaller vectors we obtained
above.

Once subdivided in this manner, the transformation can be represented as a series of
s-boxes which are now practical to store in memory. A great deal of space can be saved
this way: recall that an m-bit to n-bit transformation would require n2m bits of storage to
represent as a single table. After partitioning the input and output into j blocks of a bits in
length and k blocks of b bits in length, respectively, this transformation can be represented
as k sets of tables, where each table contains j a-bit to b-bit multiplication tables and j− 1
2b-bit to b-bit addition tables6.

One problem with this approach is that some blocks of the AT one wishes to encode may
be singular, potentially zero, sub-matrices. The output of these singular blocks can contain

6Note that addition tables for a particular size are identical, but they must be duplicated and each
encoded separately. The constant vector component of the AT may be folded into a tree of additions at any
point and so does not add a table.

46

little to no entropy from the input, reducing the amount of work an adversary would need to
do to reconstruct the AT. This situation can be avoided by using carefully selected mixing
bijections (see Section 5.2.2.2). Rather than simply encoding the AT n

mA, select ATs n
mA1

and n
mA2, such that A1 = A ◦A−1

2 , then encode A1 and A2 separately into sets of s-boxes,
and use the outputs of the A′2 as the inputs to the A′1 transformation. While this technique
does not guarantee that there will not be singular blocks in either A1 or A2, it should lessen
the amount of information leaked about A to an adversary.

That is, rather than simply encoding the AT n
mA, select ATs n

mA1 and n
mA2, such that

A1 = A ◦A−1
2 , then encode A1 and A2 separately into sets of s-boxes, and use the outputs

of the A′2 as the inputs to the A′1 transformation. While this technique does not guarantee
that there will not be singular blocks in either A1 or A2, it should lessen the amount of
information leaked about A to an adversary.

5.2.3 Bijective Encoding and Local Security

Given an encoded transformation P ′ = G◦P ◦F−1, we note that if the original transforma-
tion P is a bijection, then we can consider P ′ to be locally secure, that is, no information
can be gained about P given just the s-box for P ′. This is because given P ′, every possible
bijection is a candidate for P , given appropriate choices for F and G. This is analogous
to a one-time pad cipher where, given a ciphertext, every plaintext is possible, given the
appropriate key.

When P is lossy, the encoded transformation P ′ is no longer locally secure, as it leaks
some information to an adversary. An extreme example of this is a P whose output is
0 for all input. Given the corresponding P ′ an adversary can simply restrict his search
space to constant functions. If one is not careful, even slightly lossy transformations can
yield enough information to an adversary to enable an attack – such is the case with the
statistical bucketing attacks discussed in Section 5.4.1.

5.3 White-Boxing Example: DES

The descriptions alone of the techniques in Section 5.2.2 may not help one create an encoded
version of a transformation. To further clarify the ways these techniques can be used, we
provide here a detailed look at the white-boxing of DES.

5.3.1 Unobfuscated DES

The structure of DES is shown in Figure 5.2. The incoming data block is split into two
halves, where the right half is copied, with one copy becoming the left half of the input for
the next round, and the other copy being mutated via a series of operations: An expansion
permutation, an xoring of a round key, a pass through a set of substitution boxes, and a
pass through another permutation before it is xored with the left half of the input. After
16 rounds of this transformation, the two halves are output, with the mutated right half

47

Figure 5.2. The basic structure of DES

forming the left half of the output, and the input right half remaining unchanged as the
right half of the output.

There are four main portions of DES that need to be obfuscated: The linear portion
of the cipher before the first round s-boxes (i.e. the input permutation, the copying of the
right half, and the expansion permutation); the s-boxes for each round; the linear portion
of DES between s-boxes for rounds 1-15 (i.e. the P permutation, xoring with the left half,
swapping the input right half for the next round’s left half, and the expansion permutation
of the next round); and the linear portion of DES following the s-box in round 16. The
following sections will discuss how each of these four portions are encoded and tied together
to create a white-box version of DES.

5.3.2 White-Box DES

The high-level process of the white-box obfuscation of DES is to take the linear portions of
the cipher, represent them first as ATs, then convert the ATs to lookup tables, and use non-
linear input and output transformations to delinearize the tables, making them resistant to
analysis. Similarly, take the non-linear s-boxes, partially evaluate them with respect to the
round keys, and protect the keys by wrapping the s-boxes with input and output encodings
chosen so as to enable networked encoding with the linear portions of the cipher.

The resultant cipher is, essentially, a large set of lookup tables that are cascaded through
to produce the final output value. The steps taken to create those tables are described below.

48

Figure 5.3. DES as a sequence of table and matrix operations

5.3.2.1 White-Box DES – The T-Boxes

At the heart of DES lie its s-boxes — the non-linear substitution tables that provide the
confusion aspect of the cipher. The same is true of the substitution boxes in the white-box
version of the cipher, and perhaps even more so, as the encoded s-boxes, denoted T-boxes,
have the round keys contained within them.

In unobfuscated DES, the s-boxes are lossy transformations, moving from 6-bit inputs
to 4-bit outputs. As outlined in Section 5.2.3, if we were to simply wrap the lossy s-boxes
with input and output transformations, it could leak some information to an adversary. For
example, an adversary could always determine which T-box corresponded to s-box 4. To
combat this problem, we convert the s-boxes into 6-bit to 6-bit (6× 6) bijections by passing
the two bits of the input thrown away by the s-box through as part of the output. Not
only does this allow us to achieve local security for the T-boxes, but it also allows us to
reconstruct the input to the s-boxes in the M2 blocks (see Section 5.3.2.3).

In addition to converting the s-boxes to bijections, we also increase both the number
and the size of the T-boxes so that there are now twelve 8 × 8 T-boxes. For reasons that
are explained in Section 5.3.2.2, we need to carry the 32 bits of the left half of the data,
as well as an extra 16 bits from the right half (denoted as repl7) through the T-boxes in
addition to the 48 bits of output from the DES expansion permutation. To do this, for
each round r, eight of the twelve T-boxes are chosen at random during the construction
of the previous block (see Sections 5.3.2.2 and 5.3.2.3) and will provide the functionality
of the bijective versions of the s-boxes. These eight T-boxes will take as input six bits

7Because these 16 bits are not otherwise replicated by the DES expansion permutation, they must be
explicitly called out.

49

from the expansion permutation, and two of the left half/repl bits, and are encoded as
8
8Tr,j = Gr,j ◦

(
6
6s
′
i‖22E

)
◦ F−1

r,j , where 6
6s
′
i is the bijective version of s-box si. The other four

“dummy” T-boxes simply pass eight bits of input from the left half/repl bits through to
the M2 and M3 transformations, and are encoded as 8

8Tr,j = Gr,j ◦ 8
8E ◦ F−1

r,j .

Finally, note that our input and output transformations are 8× 4 bijections, i.e. Gr,j =
8
8Gr,j , where Chow et al. used two 4× 4 transformations per T-box. Their use of the same
input and output size when I/O-block encoding the ATs for DES could be seen as an
oversight, failing to realize that the AT matrices could be split asymmetrically. More likely
it was done to reduce the size of the encoded cipher. However, it resulted in a large negative
effect on the security of the obfuscation, enabling the two attacks described in Sections 5.4.1
and 5.4.2.

5.3.2.2 White-Box DES – The M1 Block

In unobfuscated DES, the linear portion of the cipher that precedes the first round’s s-boxes
consists of two operations: an input permutation that permutes the bits of each input block,
and an expansion permutation (EP) that replicates 16 of the 32 bits in the right half of the
input following the input permutation. The now 48-bit right half is then passed on to the
s-boxes for further transformations. By representing these permutations as matrices, it is
possible to convert these two steps into an AT consisting of a single 64× 80 matrix, which
can then be split into tables and encoded using the I/O-block and wide input encoding
techniques described in Sections 5.2.2.3 and 5.2.2.7. However, more needs to be done to
enable the later parts of the cipher to work properly, as well as to increase security of the
obfuscation.

Most of what needs to be done to create the initial encoded section of the cipher (referred
to as the M1 block) is necessary because the left half of the input is not affected by the
s-boxes8. A naive way to handle this situation would be to simply create a bypass channel
for the left-half bits, and never pass them through the s-boxes. Unfortunately, this approach
can leak information to an adversary.

To protect the left half we must pass both halves of the input through our encoded
s-boxes. As explained in Section 5.3.2.1, this is done by using twelve 8× 8 T-Boxes rather
than the eight 6× 4 s-boxes of unobfuscated DES. With the extra capacity of the T-boxes
available, we prepare the data to pass into them as follows:

First we need to compute the EP and create the repl bits, i.e. replicate the 16 bits of
the right half of the input that were not replicated by EP. This allows us to later reconstruct
the right half of the data to use as the left half input for the next round. We do this by using
a 64× 96 matrix, 96

64R, that takes in the output of the DES initial permutation (computed
using a sparse 64 × 64 bit matrix, 64

64IP), and outputs a vector where the top 32 bits are
the left half of the data, the next 16 bits are the repl bits, and the bottom 48 bits are the
result of the EP.

8When referring to the left or right halves of the input, we mean this in the standard cryptographic sense
as the left and right halves after passing through the initial permutation. For most discussion of DES, its
initial and final permutations are treated as if they did not exist.

50

The next item to change is to pass the bits from the left half of the input and the repl
bits through a bijective AT. We do this to mix the input entropy of these bits together,
so that when the output bits are distributed amongst the twelve T-boxes, any single bit
change in the left half of the DES input will likely cause a change in the output of all twelve
T-boxes, rather than a localized change in just a single T-box. This mixing is done with a
96× 96 bit matrix with a randomly selected bijection, 48

48ρ1, in the upper-left quadrant, 48
48I

in the lower-right quadrant, and zeros elsewhere (i.e. an identity bypass transformation of
48
48ρ1).

Finally, a permutation matrix, 96
96δ1, is used to group the bits to be passed into the

T-boxes.9 That is, the 48-bit output of EP is partitioned into 6-bit chunks that will be
passed into the appropriate T-boxes – more specifically, some random permutation, P , of
the elements [1 . . .12] is chosen, and bits 6i− 5+ 1 . . .6i of the output of EP are positioned
so they will be passed into T-box P (i). The remaining bits from the left half and repl are
randomly permuted to fill the remaining 48 bits.

The product of these four matrices can be computed and encoded using the I/O-block
and wide-input encoding techniques10, resulting in an encoded transform, 96

64M1 = F ◦
(δ1 ◦ (ρ1‖I) ◦R ◦ IP) ◦ G−1, where F = F1,1 o F1,2 o · · · o F1,12 with non-linear bijections
8
8F1,i, and G = 64

64I.
11 The twelve 8-bit blocks of output from M1 are then passed into the

first round’s T-boxes where the input encodings are F−1
1,1 · · ·F

−1
1,12 in accordance with the

networked encoding technique described in Section 5.2.1.

5.3.2.3 White-Box DES – The M2 Blocks

The M2 transformations are the encodings of the linear portions of DES that lie between
the s-box substitutions. Much like M1 and M3, they are the I/O-block encoding of the
product of a series of matrices. For round 1 ≤ r < 16, we have Mr,2 = Fr+1 ◦Mr ◦ G−1

r ,
where Gr = Gr,1 o · · · o Gr,12 is the output encoding from the preceding set of T-boxes,
Fr+1 = Fr+1,1 o · · · o Fr+1,12 with randomly selected non-linear bijections 8

8Fr+1,i, and 96
96Mr

the product of the following matrices:

• δ−1
r , the inverse of the δ permutation from round r. Normally this permutation was

selected in the construction of Mr−1,2, with the exception of δ1 which was selected
during the construction of the M1 block.

•
(
ρr‖48

48I
)−1, used to reconstruct the left-half/repl bits that were mixed in the previous

block.

• 96
96S. This is a matrix transformation that permutes the output of the T-boxes and
the left-half/repl bits such that the output vector would have the first 32 bits be the
left-half input to round r, the next 32 bits the right-half input, and the final 32 bits are

9Note that Jacob et al. define δ by combining two simpler permutations, γ, a permutation of the T-boxes,
and µ, a permutation of the left half and repl bits. Their definitions of these in [23] contain several errors.

10Using 8 × 8 bit block sizes, as seen in Section 5.3.2.1.
11G can actually be some other bijection, however, either the source of the plaintext must pre-encode the

plaintext with G prior to encryption, or the resulting transformation will not compute true DES, but some
related cipher instead.

51

the output of round r’s s-boxes. This reconstruction is possible because the T-boxes
were modified to pass the two bits of input that were duplicated by the EP as part of
the output. These bits can then be combined with the repl bits to reconstruct the
right half of the input.

•
(
64
64I‖32

32P
)
, which performs DES’s P-box permutation, 32

32P , on the output of the s-boxes
and leaves the left and right half inputs untouched.

• 64
96X , a matrix transform that moves the current round’s right half into the left half,
and replaces the right half with the xor of the input left half and the output of the
P-box permutation. The output of this matrix corresponds to the output of round r
of unobfuscated DES.

• 96
64R, this is the transformation that computes the EP and repl bits. It is the same
as the one from the M1 block, described in Section 5.3.2.2.

• 48
48ρr+1‖48

48I, used to mix the input entropy of the left half and repl bits of round r.
This is similar to the transformation described in Section 5.3.2.2, only with a different
randomly chosen bijective AT rho.

• δr+1 a similar permutation to the one described in Section 5.3.2.2, only with different
permutations of the T-boxes and left half/repl bits.

And so we have

Mr,2 = Fr+1 ◦
(
δr+1 ◦

(
ρr+1‖64

64I
)
◦X ◦

(
48
48I‖P

)
◦ S ◦

(
ρr‖48

48I
)−1 ◦ δ−1

r

)
◦G−1

r

.

5.3.2.4 White-Box DES – The M3 Block

The M3 transformation is the encoding of the final linear portion of DES that falls after
the s-box substitution in round 16. The structure of M3 is very similar to that of M2 from
the input encodings up through the X transformation. The difference between the two
transformations is that the final three matrix components of M2 have been replaced with
two new matrices - one that swaps the left and right halves of the ciphertext to conform to
the DES specification, and one that computes the DES final permutation. Additionally, the
output encoding for M3 will generally be an identity transformation, much like the input
encoding of M1 (see Section 5.3.2.2). A detailed description of the components of M3 is as
follows:

• δ−1
15 , the inverse of the δ permutation from round 15. This permutation was selected

in the construction of M15,2.

•
(
ρ15‖48

48I
)−1, used to reconstruct the left-half/repl bits that were mixed in the previous

M2 block.

52

• 96
96S. This is a matrix transformation that permutes the output of the T-boxes and
the left-half/repl bits such that the output vector would have the first 32 bits be the
left-half input to round 16, the next 32 bits the right-half input, and the final 32 bits
are the output of round 16’s s-boxes.

•
(
64
64I‖32

32P
)
, which performs DES’s P-box permutation, 32

32P , on the output of the s-boxes
and leaves the left and right half inputs untouched.

• 64
96X , a matrix transform that moves the current round’s right half into the left half,
and replaces the right half with the xor of the input left half and the output of the
P-box permutation. The output of this matrix corresponds to the output of round r
of unobfuscated DES.

• 64
64W , which swaps the left and right halves of the output. This is equivalent to a 32-bit
rotation of each of the rows of 64

64I.

• 64
64FP A sparse matrix that performs the DES final permutation.

And so we have

M3 = F17 ◦
(
FP ◦W ◦X ◦

(
64
64I‖P

)
◦ S ◦

(
ρ16‖48

48I
)−1 ◦ δ−1

16

)
◦G−1

16

.

5.4 Attacks on Chow’s White-Box DES

While Chow et. al.’s white-box implementation of DES is more secure than an unprotected
implementation of key-impregnated DES, it still fails in the face of two known attacks: a
statistical bucketing attack, and a fault injection attack. The statistical bucketing attack
and a more powerful version of this attack will be described in Section 5.4.1, and the fault
injection attack will be described in Section 5.4.2. Our improvements to the cipher and how
they affect these attacks are covered in Section 5.5.

5.4.1 Attack on Split T-Box Output

Chow et al. describe a statistical bucketing attack on their white-box DES that exploits
the nonlinearity of the s-boxes to expose the key in under ten seconds. Their attack tracks
individual bit changes in the input to the second round of s-boxes, generating and comparing
preimage sets of input to expose the key. For their T-box implementation, which divides the
8-bit T-box output into two separately encoded 4-bit halves, one of which is the obscured
4-bit s-box output, we observed that it is possible to generate more detailed partitions in
the input and expose the key more efficiently. We implemented both attacks and found
ours to be several times faster than that of Chow et al.

Our implementation of the statistical bucketing attack identifies the T-box correspond-
ing to each s-box, exposes the first round key six bits at a time, and then uses brute force
search to reveal the full DES key. Our software precomputes the 4-element sets of 6-bit

53

Figure 5.4. The structure of the domain (left) causes a correct
round subkey (the effects of which are seen on the right) to produce
recognizable preimage sets.

preimages for each s-box from the corresponding T-box using an all zero key. The 6-bit
elements of each preimage are run backwards through the expansion permutation (EP) and
the DES initial permutation (P1) to produce the corresponding zero-key preimages.

To identify the T-box corresponding to each s-box given a white-box DES, we encrypt
0 through the first T-boxes. We then turn on individual input bits and observe the changes
in the T-box output to identify the 4-bit T-box output corresponding to each s-box. Next
we begin testing the 6-bit hypotheses for each portion of the first round key. Hypotheses
are reversed through EP and P1, and this value is xored with all elements of each zero-key
preimage before being passed to the encryptor. If the processed preimages each map to a
single 4-bit T-box output (i.e., the set of preimages remain the same), the hypothesis is
correct and 6 bits of the 48-bit first round key have been identified (Figure 5.4). When the
first round key is known, we record the full white-box DES encoding of an arbitrary input.
This is used to perform brute force search of the remaining bits, comparing the recorded
result with a conventional DES encoding for each potential key until a match is found.

In the pre-processing phase of the attack implementation, a reference DES is created
that produces first-round s-box results. All 64 6-bit s-box inputs (corresponding to 6 bits
of message encrypted with a zero key) are passed through all eight s-boxes and mapped
backwards through EP and P1. The DES inputs corresponding to each of the 16 4-bit
results for each s-box are recorded as preimage sets. Each s-box has 16 zero-key preimage
sets with 4 elements.

The first step of the actual attack is to identify which of the twelve T-boxes correspond
to the eight s-boxes. This is a matter of encrypting a zero block through the first round of
T-boxes, and then encrypting individual bits and observing which T-box outputs change.
For the bits b0b1b2b3b4b5 passed into an s-box, bits b0 and b5 are passed as “bypass bits” in
the T-box to create a bijection, b1 and b4 are produced as bypass bits for other T-boxes,
and b2 and b3 are replicated in an arbitrary T-box as part of the replicated bits (those bits

54

not already duplicated by EP) for Rr. The T-box that is changed by both b1 and b4 for an
s-box is the matching T-box, and in particular the 4-bit T-box output block that changes
corresponds to the 4-bit s-box output. Our attack uses this process to build s-box output
bitmasks.

Once the s-box outputs have been identified, the program runs through each s-box and
each of 64 corresponding candidate 6-bit portions of the first round key. For each candidate
key, the 6 bits are reversed through EP and the DES initial permutation to get a plaintext
that effectively cancels those key bits for that s-box. This key preimage is xored with the
elements of a zero-key preimage set, and these values are passed into the white-box DES.
The s-box output bitmask is used to isolate the results, and the four results are compared.
If they are not all equal, then the candidate key bits are incorrect, and the algorithm moves
on. If all four results are equal for all preimage sets, the candidate key bits are correct12.

At this point we have two hypotheses for the first round key (see Footnote 12), and
the algorithm is able to generate key schedules and perform brute force search of the 29

possible keys to find a plaintext/ciphertext pair matching one created with the white-box
DES. From start to finish, a largely unoptimized version our attack takes approximately
three seconds on an 800 MHz G4 processor.

Our statistical bucketing routine returns a DES key when given both a complete instance
of Chow et al.’s DES function and a crippled version that returns the output of the first
round of T-boxes. We supplied a crippled function for expediency, but this is not necessary;
a function that returns T-box output can be automatically generated by analyzing the
encryptor’s control flow. We have not implemented this portion of a full attack for either
our attack, or Chow’s original version.

Because we record preimage sets considering the entire s-box output, we can reduce
the hypothesis space for each 6-bit portion of the first round key to a single value. This
makes the attack faster than that described by Chow et al., which considered only one bit
of s-box output. With minimal algorithmic optimization, the entire process takes about
three seconds on our reference platform. The statistical bucketing attack depends upon the
separation of the permuted s-box results from the other T-box output bits. The s-boxes are
lossy, and so the preimages have multiple elements and may be compared with one another
even when the output values are renamed. When T-box output is a permuted 8-bit value,
the T-boxes are bijections and preimage comparison is no longer useful.

5.4.2 Differential Fault Injection Attack

Jacob et al. describe an attack on the white-box DES implementation of Chow et al.,
in which faults are inserted to enable differential cryptanalysis of the embedded DES s-
boxes. The attack is a very efficient one, requiring just dozens of calls to a decryption
oracle and a similar number of encryptions using the white-box implementation to recover
48 bits of the embedded key. The other 8 bits can be recovered via brute force attack
using a reference implementation of DES. We describe a simplified interpretation of the

12The sole exception is s-box 4, for which the preimage sets are the same as those for inputs that were
xored an with 101111b prior to entering s-box 4. This property was first reported by Shamir in [44].

55

Figure 5.5. The attack proceeds by selecting ciphertexts, con-
sulting a decryption oracle, recording the next to final results from
encryption, and selectively overwriting these intermediate results
prior to completing the encryption.

attack below. Throughout this description we assume the adversary has a white-box DES
encryption function, and we will use the following notation:

Ek
d0,d1

(l, r): This means to run the white-box encryptor, with embedded key k, for
rounds d0 through d1 on the plaintext that consists of l in the left block and r
in the right. If only d0 is specified, then only that one round of encryption will
be performed at that time. The resulting 96-bit value, σd1 will be the obfuscated
input to the T-boxes of round d1 + 1.

Dk (l, r): This means to call the decryption oracle with embedded key, k, on the
ciphertext consisting of l in the left half, and r in the right. The resulting 64-bit
value, l0, r0 will be the resulting plaintext.

We will also assume that the attacker is working on the ciphertext at the output of
round 16 (denoted by the blocks L16 and R16, i.e. before the final DES permutation. This
is a valid assumption, as the final permutation is well known and easily invertible.

The fault injection attack proceeds in four stages:

56

• Determine the representation of L15 = fk
16(0), R15 = 0

This is done by first computing l0, r0 = Dk (0, 0), and then computing σ15 = Ek
1,15 (l0, r0)

(see Figure 5.5a). This is the obfuscated representation of L15 = fk
16(0), R15 = 0 and

will be used later in the attack, where we will refer to it as Σ15.

• Determine which segments of σ15 affect which bits of L16

This is done by first computing li, ri = Dk
(
2i, 0

)
and then computing σi

15 = Ek
1,15 (li, ri)

for 0 ≤ i < 32 (see Figure 5.5b). The σi
15 can then be compared to Σ15 to determine

which 4-bit blocks have changed for each i. This also tells the attacker which T-boxes
are the “real” T-boxes, as well as to which s-box they correspond.

• Determine fk
16(0)⊕ fk

16(2
i)

First compute li, ri = Dk
(
0, 2i

)
, then compute σi

15 = Ek
1,15 (li, ri) for 0 ≤ i < 32 (see

Figure 5.5c). In the second step, it can be determined which T-box is affected by the
bit that is set in the right half of the ciphertext, and in particular, which 4-bit block(s)
in σi

15. The attacker can now swap in all of the blocks of Σ15 that will not overwrite
the 4-bit block that is affected by 2i, call this new value σ′i15.

13 This will have the
effect of changing L15 from fk

16(2
i) back to fk

16(0) (see Figure 5.5d). Now, computing
Ek

16(σ
′i
15) results in L16 = fk

16(0)⊕ fk
16(2

i), which will be used in the final step.

• Perform differential cryptanalysis on the s-boxes
Given up to six different fk

16(0) ⊕ fk
16(2

i) for each s-box that the various 2i will fall
into, the attacker now performs differential cryptanalysis on each s-box to recover the
6-bits of the final round sub-key that goes into each s-box. Once the 48-bit sub-key is
recovered, use brute force on a reference implementation of DES to recover the other 8
bits of the key. Note that the technique described in the previous step is guaranteed to
produce at least four valid values of fk

16(0)⊕ fk
16(2

i), which may result in the attacker
recovering as few as 40 of the 48 bits of the final round sub-key, in which case the
brute-force portion of the attack will require up to 216 trial encryptions. Slightly more
involved techniques in step three, however, can retrieve all 48 bits of the sub-key.

5.5 Implementation Improvements

While the changes we have made to Chow et al.’s version of white-box DES may seem
small at first blush, they have a profound effect on the security of the resulting cipher.
In particular, the changes completely nullify the statistical bucketing attack, and severely
limit the effectiveness of Jacob et al.’s fault injection attacks. Analysis of these effects is
provided in the following sections.

5.5.1 Statistical Bucketing Attack Resistance

Chow et al. admitted that their white-box DES implementation is vulnerable to a statis-
tical bucketing attack on the input to the second round of T-boxes, but nevertheless they
“recommend 4 × 4 blocking” for the matrices making up DES. This exposes their imple-

13This step will need to be repeated twice for those bits that are replicated by the expansion permutation,
once for each 4-bit block that will be affected.

57

mentation to our more aggressive statistical bucketing attack, which exploits the separation
of s-box output and supplemental output produced by the T-boxes.

Using an 8× 4 block size rather than a 4× 4 block size prevents both Chow’s statistical
bucketing attack, and our new attack. Although it would map well to the input and output
of fully-delinearized T-boxes, 8× 8 I/O-block encoding of the Mis unfortunately produces
addition tables that map 16 bit values to 8 bit values, for a total of more than 250 MB of
tables to implement a single encryption function! Using an 8 × 4 block size allows the T-
box output to produce an 8-bit permuted value from the concatenation of two 4-bit values,
and the multiplication and addition tables that make up the I/O-block encoded matrix
become 8 × 4 tables. The result is a DES implementation whose T-box output does not
leak information needed by the statistical bucketing attack. The new DES is the same size
as Chow et al.’s, as the addition tables in both are the same size, and these tables make up
the bulk of white-box DES.

Further discouraging analysis of the T-box output is possible by completely eliminating
it as an accessible intermediate value. Once an Mi has been I/O-block encoded using
an 8 × 4 block, the initial 8 × 4 multiplication tables accept the same size output as the
8× 8 T-boxes produce, and the results of a T-box and a corresponding multiplication table
can be precomputed to form a single 8 × 4 table. Each T-box result is fed into multiple
multiplication tables, so ultimately this precomputation produces a replacement for each
multiplication table and eliminates the T-boxes. (Chow et al. used the same approach when
folding each pair of 4 × 4 multiplication tables into the subsequent addition table.) After
this process, our entire DES implementation consists of 8× 4 tables: multiplication tables
(for the first AT only), fused T-box/multiplication tables, and addition tables. Chow et al.’s
implementation uses 8× 8 T-boxes (constructed with split input and output encodings, to
take two 4-bit input halves and produce two 4-bit output halves), and 8× 4 vector addition
tables.

To prevent the original statistical bucketing attack on the input to the second round of
T-boxes, we must disrupt the preimage of each input bit by intermixing the s-box input
with Lr and Rr. We mix the 16 replicated bits of Rr with Lr by including a random AT,
ρ, in the Mis14, and delinearize the T-box input as a single 8-bit block. Moving to an
8 × 8 block size for the Mis would allow us to pass the T-boxes 8-bit blocks instead of
two concatenated 4-bit blocks, but as we have said this would produce an intolerably large
DES implementation. Once the 8× 4 I/O-block encoding has been prepared, however, it is
possible to use combined function encoding [11] on the final addition tables of each pair of
trees (see Figure 5.1) in the I/O-block encoding, to generate the input for each T-box as a
single 8-bit result. The combined function encoding replaces twenty-four 8× 4 tables with
twelve 16× 8 tables before each round of T-boxes. Further optimization to use two 12× 4
tables in place of each 16× 8 table appears possible.

5.5.2 Differential Fault Injection Attack Resistance

In order to expose the final round subkey, this fault injection attack takes advantage of two
of the design decisions made by Chow et al.: the splitting of the 8-bit T-box into two 4-bit

14According to [23], Chow et al. use a simple permutation µ within δ without an affine transform.

58

Bits 4-6
000 100 010 001 110 101 011 111

000
0.00
0.00
0.00

2.68
3.31
5.00

2.42
3.32
5.00

2.42
3.24
5.00

3.68
5.42
6.00

3.68
5.51
6.00

3.42
5.40
6.00

5.00
5.88
6.00

100
2.42
3.08
5.00

3.68
5.14
6.00

4.00
5.43
6.00

3.42
5.33
6.00

5.00
5.84
6.00

4.00
5.88
6.00

5.00
5.91
6.00

5.00
5.97
6.00

010
2.19
2.99
5.00

4.42
5.40
6.00

3.68
5.37
6.00

3.42
5.14
6.00

5.00
5.91
6.00

4.42
5.93
6.00

4.00
5.84
6.00

6.00
6.00
6.00

001
2.42
3.24
5.00

3.42
5.15
6.00

3.68
5.43
6.00

3.42
5.40
6.00

5.00
5.94
6.00

4.42
5.86
6.00

4.00
5.81
6.00

5.00
5.97
6.00

B
it

s
1-

3

110
3.68
5.39
6.00

5.00
5.78
6.00

5.00
5.94
6.00

4.00
5.84
6.00

5.00
5.97
6.00

5.00
5.97
6.00

6.00
6.00
6.00

6.00
6.00
6.00

101
3.68
5.43
6.00

4.00
5.81
6.00

5.00
5.91
6.00

4.41
5.86
6.00

5.00
5.97
6.00

5.00
5.97
6.00

5.00
5.97
6.00

6.00
6.00
6.00

011
3.68
5.38
6.00

5.00
5.88
6.00

5.00
5.97
6.00

5.00
5.91
6.00

6.00
6.00
6.00

6.00
6.00
6.00

5.00
5.97
6.00

6.00
6.00
6.00

111
5.00
5.97
6.00

6.00
6.00
6.00

6.00
6.00
6.00

6.00
6.00
6.00

6.00
6.00
6.00

6.00
6.00
6.00

6.00
6.00
6.00

6.00
6.00
6.00

Cell entries show the minimum, mean, and maximum information gain given
successful fault injection attacks on bits of s-box 1 input bits 1 through 6 as
indicated by the row and column.

Table 5.1. Expected information gain in bits of final round
subkey for s-box 1.

halves, and the specification of ρ as a permutation. This is done as follows:

1. The four bit blocking ensures that the “swapping in” of the representation of fk
16(0)

will overwrite at most two right half bits in the “real” T-boxes (we are not concerned
with the “dummy” T-boxes), thus guaranteeing at least four valid fk

16(0)⊕fk
16(2

i) data
points per s-box – more than enough to carry out a differential attack on the s-boxes.

2. Because µ is simply a permutation of bits, a single bit change to L16 results in a single
bit change in L15 (and vice versa) This means that only a small subset of the 4-bit
blocks that represent fk

16(0) need to be “swapped in” in order to learn the value of
fk
16(0)⊕fk

16(2
i) for any single s-box. Acting in concert with the note above, this makes

it likely that an attacker can gain more than 4 valid fk
16(0) ⊕ fk

16(2
i) data points for

each s-box, improving the efficiency of the attack.

Our improvements to white-box DES remove both of those leverage points. The first is
affected by our introduction of 8-bit blocking at the inputs to the T-boxes. If a bit is flipped
in the right half of the ciphertext, this change will be destroyed if the bit is anywhere in
one of the T-boxes that are overwritten when fk

16(0) is swapped back into L15. With the
4-bit blocking of Chow et al., four input bits are guaranteed to never be overwritten, thus
four valid fk

n(0) ⊕ fk
n (2i) data points are guaranteed to be computed in every DES s-box.

In our implementation, there are no such guarantees.

59

The second leverage point is removed by augmenting the permutation µ with a random
affine transform. Any single bit change to L16 will result in an expected change in half
of the bits of L15 (as well as the replicated bits of the right half). Since each real T-box
contains two of these bits, we can expect that 6 of the 8 real T-boxes (and 10 of the 12 total
T-boxes) will be affected by a single bit change in L16. What this implies is that in order
to reset L15 so it contains fk

16(0) in at least the four bit positions that contain the s-box we
are attacking, we will likely have to swap in all twelve 8-bit blocks of Σ15.15

Unfortunately, the 8-bit blocking does not completely eliminate the threat of the fault
injection attack. This is because each real T-box contains only two of the mixed left-half
and replicated right-half bits. If the attacker always swaps in the eleven 8-bit blocks of Σ15

that do not overwrite the bit of interest set in the right half, there is still a chance that
those two bits, which correspond to two bits of the representation of fk

16(2
i) may just be

the same as the equivalent bits of fk
16(0). This event occurs with probability 0.25.

If this happens, L15 will be reset to fk
16(0) after completing the encryption, L16 will

contain fk
16(0)⊕ fk

16(2
i) for the s-box of interest, and the attacker will have gained a valid

data point to use in differential cryptanalysis. The attacker can determine if this has
happened because there will be at most two non-zero 4-bit blocks in the left half16. If this
has not happened, most if not all of the 4-bit blocks of the left half will be non-zero with
overwhelming probability.

In our improved implementation of white-box DES, an attacker still has a 0.25 probabil-
ity of obtaining a valid data point to use in the differential cryptanalysis, with up to six data
points per s-box. The amount of information gained varies according to the s-box being
attacked, the position of the injected fault within the s-box, and the number of data points
obtained. As an example, this information is provided for s-box 1 in Table 5.1. However,
the attacker will gain an expected 1.22 effective bits17 of the final round sub-key per s-box.
Based on this measurement, we have improved the resiliency of white-box DES against this
attack from surrendering a guaranteed 40 bits of the final round key (and all 48 with high
probability), to surrendering an expected 9.8 bits of the final round key. While this is still
not as strong as a black-box implementation, it is strong enough to make an attack on the
triple-DES variant of our implementation infeasible.

5.5.3 Optimizing Construction

In principle, the condensed matrices, mixing bijections, and T-boxes can be combined to
the desired end in many different ways. The resulting obfuscated implementation will look
no different. Without consideration of the space and time required, however, the temporary
data allocated during generation can vary substantially. In practice, a few optimizations

15The probability of this not occurring is approximately 2−8.7.
16The block corresponding to the s-box of interest plus one if the bit set in the right half was copied by

EP. The adversary can tell which is which based on which s-boxes affect which bits in the final output.
17The attacker may not necessarily determine any actual bits of the sub-key, but is still able to reduce the

search space of possible keys that need to be checked during brute force search.
18MiB is the number of mibibytes (220 bytes) of tables if 4-bit values are stored as 8-bit characters (for

efficiency of reference). Packed MiB is the number of mibibytes of tables if two 4-bit values are stored per
8-bit character.

60

MiB18 Packed MiB
Chow et al. (4× 4) 4.54 2.27
8× 4 4.49 2.25
8× 8 274.75 274.75
8× 4, Joined Roots (JR) 16.40 14.20
8× 4, JR, 3DES 48.83 42.42

Table 5.2. Comparison of white-box DES implementations

Memory
Allocation Run Time

Before Optimization 287 MB 138 sec
Array Resource Pooling 264 MB 127 sec
Streamlining I/O-Block Encoding 67 MB 92 sec
Memoizing Inverse Input Encodings 64 MB 92 sec
Constant-Matrix Folding 62 MB 92 sec
Buffer Reuse During Network Encoding 60 MB 92 sec
Specialized Bit-Matrix Operations 58 MB 92 sec
Array Type Declarations 43 MB 92 sec
Non-consing Random Permutation Function 20 MB 92 sec
Using Compressed Bit-Matrices in T-box
Construction

11.6 MB 49 sec

Compiled File Containing Obfuscated DES
Function

4.9 MB

Table 5.3. Run time and runtime memory allocation as com-
pared to final DES function size, over the course of a series of
optimizations

61

made substantial improvements in the time and space required to generate an instance of
DES. Once our implementation was complete and correct, we performed a series of optimiza-
tions that took the temporary memory allocation when generating a 4.9MB implementation
with 8 × 4 I/O-block encoding down from 287MB to a mere 11MB (including storage for
the result).

Selected optimizations are summarized in Table 5.3. After some clear worst offenders
were removed (a naive implementation of I/O-block encoding, most notably), optimization
became a matter of tuning and refining several things throughout the system, in large
part because most of the data were collections of 256-byte arrays. Precomputing constant
matrices used in the ATs for DES reduced the AT multiplications that had to be done at
runtime and saved some space. Declaring the types of our matrices to the Lisp compiler
allowed elements to be packed more densely and manipulated with unboxed instructions by
the compiled code, improving time and space19. Shrewd preservation and reuse of memory
allocated to matrices, permutations, and temporary tables saved a great deal of space, and
saved time spent initializing new empty structures. Finally we found that a surprising
amount of time was devoted to creating and applying small random permutations; a tuned
version of this common operation cut the space and time used in half one last time.

We implemented white-box DES using several approaches, including the 4 × 4 I/O-
block encoding of Chow et al., to compare the time and space requirements (Table 5.2).
The test platform was an 800Mhz PPC G4 running Mac OS X 10.2.6 and MCL 5.0b5. We
implemented both our modified systems and Chow et al.’s original algorithm in Lisp in this
environment.

5.6 Extensions Of These Techniques

There are a number of natural extensions of these white-boxing techniques, for example,
the creation of a white-box version of triple-DES for added security, and the encoding of
other ciphers such as AES. A brief discussion of these two extensions follows.

5.6.1 Application to triple-DES

When extending the technique to triple-DES, the final matrix from each DES portion
(M3M2) is combined with the first matrix from the following DES (M1). This eliminates
intermediate values that would enable the implementation to be compromised in thirds.
Using M1M3M2 as a single I/O-block encoded matrix between the three DES portions re-
quires the entire triple-DES be attacked as a whole. In addition it saves the encryptor both
space and time, causing the whole of triple-DES to be less than three times as large and
take less than three times the time as the encoded DES.

Our statistical bucketing attack applies to a triple-DES implementation constructed
using Chow et al.’s white-boxing technique with split output T-boxes. Once we extract

19Lisp is dynamically typed so, typically, values carry tag bits to identify their type to the run-time
environment. Declarations can be used to strip these bits off for the duration of several functions, eliminating
the need for so-called boxing and unboxing sequences.

62

47 bits of the first key, leaving 9 bits of uncertainty (for the remaining 8 bits and the two
possible 6-bit key portions associated with s-box 4), we have 512 hypotheses for what the
first round encryption result could be. This equates to 512 hypotheses for what would result
(implicitly) in a zero result after the first DES (or a zero result xored with a 6-bit first-round
subkey for the second DES), giving 512 possible 48-bit first round keys (at most; it may
be possible to eliminate some of these). Ultimately this leads to 218 hypotheses for DES
keys 1 and 2 when extracting a round key from the final iteration of DES. The resulting
search space is 227 to recover the full key. It is also worth noting that once the initial 512
hypotheses are acquired, they can be investigated independently, paralleling the attack.

We are inclined to recommend triple-DES rather than DES for any conceivable use case,
because the malicious host is able to generate as many plaintext-ciphertext pairs as needed.

5.6.2 White-Box Encoded AES

In addition to obfuscated DES function generation, we have implemented an obfuscated
AES encryption function generator as described by Eisen and van Oorschot [15]. In addi-
tion to providing the increased security of AES over DES, the implementation also has a
smaller memory footprint, and is more flexible because it takes a transformed version of an
encryption key as a parameter.

Like white-box DES, the AES implementation is made up of a large number of lookup
tables and a function which operates on the tables. White-box AES consists of 8x8 and
8x32 tables grouped into “families” whose output can be xored using a simple machine
instruction. This is done by randomizing the output of the tables with random affine
transformations (ATs) that share a common linear component. Because familial output
can be xored into a result suitable for a subsequent table’s input decoding, white-box AES
does not require obfuscated ATs to perform addition, and eliminates tables that can not be
avoided in DES. They then add input and output encoding to the encryption function itself.
Unlike published white-box DES generators, white-box AES generators are able to obfuscate
the key schedule generation mechanism itself, and couple the output of an obfuscated key
schedule function with an obfuscated encryption or decryption function.

Randomizing tables in this way provides perfect local security, but in the first and last
rounds of AES the true plaintext and ciphertext are known and can be used to compromise
the key using the following algorithm (which may be known but has not been published
previously). Here we describe in pseudocode a simple attack that may be used to reveal the
AES key with a trivial amount of computation, given the obfuscated key input to a dynamic-
key white-boxed AES implementation. The attack depends on access to the external input
and output encoding. Although Eisen and van Oorschot assume this external encoding is
separated from the main white-box AES [10, 15], this attack demonstrates the vulnerability
represented by even black-box access to the external encoding.

kT (p) = random ∈ 0..255
ATT (p) = random bijective affine transform over GF (28)
T (p) = ATT (p)(S(p ⊕ kT (p)))

using T (p) as a table (without being given ATT (p)), deduce k:

63

∀ (hypotheses) k′ ∈ {0..255}
let pi = k′ ⊕ S−1(i), for i ∈ {0, 1, 2, 4, 8, 16, 32, 64, 128}
let AT = Ax + c : c = T (p0), col1(A) = T (p1) + c, ... col8(A) = T (p128) + c

if ∀ p : T (p) = AT (S(k′ ⊕ p)) → k′ = kT (p)

Eisen and van Oorschot do not describe a means by which the encryption function
can stand alone securely. To compensate, they add input and output encoding to the
encryption function itself and require other components of a containing system to encode
input destined for encryption and decode the encryption function’s results to produce the
final ciphertext. We do not believe this addresses the problem so much as removes it from
the immediate vicinity of the white-box AES. We believe that further obfuscation (beyond
the AT families) of the first and last rounds of AES will eliminate the vulnerability of the
first AES round-key, and allow the locally secure inner rounds to remain as they are. This
should not increase the total implementation size very much.

Our implementation and discussion pertains to the dynamic-key AES implementation
[15], but it is important to note a new paper by Billet, Gilbert, and Ech-Chatbi [6] describing
an efficient attack on the original static key white-box AES [10]. We have not yet analyzed
their attack in sufficient depth to know how it affects the dynamic-key version of white-box
AES, but their attack appears superior to our attack in that it does not seem to require
even black-box access to the external encodings.

5.7 Future White-Boxing Work

While the encoding of ciphers such as DES and AES have been covered in great detail,
there is still a great deal of work to be done in the field of obfuscation. Foremost among the
open issues is the formalization of the ideas behind obfuscation, as well as the attack model
that obfuscated code is claimed to be secure in, so that a better analysis of the security of
these techniques may be performed. Additionally, much more cryptanalysis of the existing
techniques is required before any faith should be expressed in the security of white-box
encoding.

Other ongoing areas of research in the area are in the optimization of already existing
implementations in order to create smaller, faster code, discussed below, and the implemen-
tation of a hardware version of these ciphers, removing the need for tamper-proof hardware.

Because addition table output is sent into twelve separate fused T-box/multiplication
tables, we cannot combine the 16 × 8 addition tables with them. We recommend the
combined function encoding of the root tables of each pair of addition tables that produce
T-box input, and the creation of an intermediate value for T-box input that is obfuscated
in 8-bit blocks. Once these modifications are made, each T-box input block includes six
s-box input bits and two bits containing information about the left and replicated bits.
This makes it more difficult to identify which T-box corresponds to which s-box in the
second round and removes the association between preimages and individual bits of input,
preventing statistical bucketing attacks.

Further improvements in the size and security of white-box DES may be possible. Join-

64

ing the roots of the vector addition trees to prevent statistical bucketing attacks on the
T-boxes may not be necessary for any but the first and final few T-boxes, for example. Us-
ing split T-boxes in the interior of DES would greatly reduce the size of the implementation,
and would lead to even greater savings in a triple-DES implementation. It is also possible
to eliminate the dummy T-boxes in favor of eight 12-bit T-boxes. This would improve the
security of the system further against the differential cryptanalysis attack of Jacob et al.,
reducing the adversary’s expected gain to 0.05 effective bits per T-box, totaling 0.40 effec-
tive bits. This security comes at a substantial increase in size if 12-bit T-boxes are used
throughout DES, so it is worth evaluating the potential of reverting to 8-bit, split-input
T-boxes for the interior rounds to limit this growth.

Chow et al. speculates the possibility of matrix analysis enabled by “sparse” tables –
multiplication tables containing only a few of the 2b possible output values. We have not yet
implemented our solution to this, but it should be possible to give individual values in the
table many obscuring names instead of only one, and compensate for this when computing
the contents of the following tables. Analysis of the utility in attacking the matrix before
and after such modifications is necessary. Some analysis is also necessary to confirm that
the new system is resilient to other forms of cryptanalysis. While we believe that the four
4-bit values passed to the joined root in our current implementation are not as susceptible
to cryptanalysis as the original split T-box inputs were, we have not yet demonstrated this.

This additional work should ultimately result in a white-box implementation of triple-
DES that is as compact as possible while providing near black-box level security.

65

Chapter 6

Cryptographic Approaches to
Securing Mobile Code

Obfuscation methods such as the white-boxing described in Chapter 5 show promise, but
nevertheless fail to have rigorous security proofs. In this chapter, we examine using cryp-
tographic methods to obfuscate code. The resulting security is based on the security of the
underlying cryptographic primitives used.

Encryption is meant to render plaintext unintelligible. Hence one would expect that
in general, encrypting code does not produce anything executable, and, if it did, the code
would have no meaningful relation to the original. However, in certain cases, encryption
can be used to hide the data that is input into a function [16], or certain types of encryption
schemes can be used to produce encrypted, yet executable instructions when applied to a
restricted class of functions [40, 41, 42]. In Section 6.1 we examine the technique of working
with encrypted data and in Section 6.2 we examine computing with encrypted functions.

We saw previously that it could be useful to have an obfuscated version of an encryption
or decryption function such as triple-DES or AES. It would also be useful to have an
encrypted or obfuscated version of a signature scheme to allow agents or hosts to sign
messages or documents on behalf of a client. This however, introduces some complications
such as the retainability of non-repudiation and source authentication. We address this
problem in Section 6.3.

6.1 Computing with Encrypted Data

In [16], Feigenbaum suggests the notion of computing with encrypted data. The premise is
that one does not care about the confidentiality of a program itself, but instead is interested
in protecting the actual inputs and outputs. For example, suppose Alice wants to compute
f(x), but doesn’t have the power to compute the function f , so she asks Bob to do it for
her. She doesn’t want Bob to learn the inputs or outputs of her particular computation;
so instead of asking Bob to compute f(x), she asks for f(y) and somehow Alice is able to
easily compute f(x) from f(y), but Bob is not. An example given in [16] is that of blinding

66

a problem instance of a discrete log computation: Suppose Bob can solve the discrete log
problem. Alice wants to find the discrete log of y = gx (mod p) (x = DLg(y)), but doesn’t
want Bob to learn x. So instead of asking Bob to find DLg(y), Alice generates a random
secret r and asks for DLg(y ∗ gr) = DLg(gr+x). When Bob returns the value k, then Alice
computes x = k−r. Since r is secret, Bob cannot learn x. This idea is difficult to generalize
and cannot be applied to all functions, but the notion of encrypting inputs can be tried on
a case-by-case basis if the goal is not function confidentiality, but data confidentiality.

6.2 Computing with Encrypted Functions

In [40, 41, 42] Sander and Tschudin begin to tackle the problem of a software-only approach
to securing mobile code. Their idea is to develop “executable” encrypted programs. In other
words, programs that implement encrypted functions that can be run without first having
to be decrypted.1 They believe mobile agents should act autonomously and hence require
that their protocols are non-interactive, but do allow a final computation to be done once
the agent completes its work. Two approaches to “encrypted” functions are described. The
first is via function composition and the second via homomorphic encryption functions.
Both have limited application.

6.2.1 Function Composition.

The idea of encryption via function composition is similar to that of blinding inputs as
described in Section 6.1, but applied to the function. As an example, suppose that f is
a linear map. Then f can be represented by a matrix, F . To “encrypt” F , Alice chooses
a random invertible matrix, R, and computes E(F) = R ◦ F . She can then pass off a
program implementing E(F) to Bob and ask him to compute y = E(F)(x) for her input
x. Alice can recover her desired output Fx by applying the inverse of the matrix R to y:
Fx = R−1y = R−1RFx. This notion can be generalized to apply to rational functions2

instead of linear functions. A rational function f is encrypted via E(f) = h = s ◦ f where
s is an invertible rational function. The security of the problem relies on the difficulty
of decomposing functions: Given a multivariate rational function h that is known to be
decomposable, find f so that there exists an s such that h = s ◦ f . Although there is no
known polynomial time algorithm to solve the decomposition problem, it must be studied
in more detail as it applies to this problem. In particular, for this application it is necessary
to find such an s with an inverse that is easy to compute. Thus far, all suggested candidates
have been found to be insecure (see [40]).

6.2.2 Encrypting Functions via Homomorphic Encryption.

A second approach described by Sander and Tschudin [40, 41, 42] involves encrypting a
function with an actual encryption algorithm. The method applies only to rational functions

1Note that this is different from the idea of encrypting code where the instructions must first be decrypted
before they can be run.

2A rational function is one that can be written in the form f = g
h

where g and h are polynomials.

67

and the only type of encryption algorithms that can be used are homomorphic encryption
schemes. The term homomorphic is used to describe a property of a mapping and needs to
be used in conjunction with an operation. For instance, a mapping E : A → B is additive
homomorphic if given a1, a2 ∈ A and E(a1), E(a2) ∈ B, there is an efficient algorithm
to compute E(a + b) ∈ B. An encryption scheme is multiplicative homomorphic if given
E(a1), E(a2) there is an efficient algorithm to compute E(a1a2); and mixed-multiplicative
homomorphic if given E(a1), a2 there is an efficient algorithm to compute E(a1a2) that
does not reveal a1. Sander and Tschudin prove that an additive homomorphic encryption
function on Z/nZ, the ring of integers modulo n, is also mixed multiplicative homomorphic.
In particular, they describe a scheme based on the discrete logarithm problem that satisfies
these properties (see [40]).

Suppose you have an encryption function, E : A→ B, satisfying the additive and mixed
multiplicative homomorphic properties. Given a polynomial, p =

∑
ai1...ikX i1

i ...X ik
k , with

coefficients in the domain, ai1 ...ik ∈ A, Sander and Tschudin ([41], p.115) give the following
method for computing with an encrypted version of p. Encrypt the coefficients to replace
each ai1...ik by E(ai1...ik). To compute E(p) on input x1, ..., xk do the following: Evaluate
the monomials (X i1

1 ...X ik
k) on the input x1, ..., xk. Each term of E(p), E(ai1...ikx

i1
i ...xik

k),
can be evaluated using the mixed multiplicative property of the homomorphic encryption
scheme, E. The sum, E(p(x1, ..., xk)) is then be computed using the additive property of
E. This idea can be extended in the natural way to work on rational functions as well.

Now suppose that Alice has a rational function, f , that she wants Bob to compute
for her, but she doesn’t want Bob to learn f . Alice sends Bob a program to compute an
encrypted version of f and then gives Bob her input x1, ..., xk. Bob returns E(f(x1, ..., xk))
and Alice applies the decryption algorithm to learn f(x1, ..., xk).

Although this gives a provably secure method for encrypting certain functions, there
are limitations. First note, that while encryption hides the coefficients, it does not hide
the “skeleton” of the function - i.e., which monomials (which terms to which powers) occur
in the function. This may be a problem if that must be secret (for example in an RSA
algorithm, the skeleton reveals the key). Further, if the degree of the polynomial is low,
this scheme is subject to interpolation attacks: if the output pairs (x, f(x)) are known,
then given enough pairs, the coefficients of f can be solved for and f recovered. Finally,
homomorphic encryption schemes are in general based on public key algorithms and the
encrypted version of the function would be slow.

6.3 Digital Signatures

In the mobile agent scenario, it may be convenient to give an agent authority to sign
particular inputs on behalf of a client. Further, public key algorithms in general and digital
signature algorithms in particular are computationally intensive and can be prohibitive for
a low power machine to compute. Hence, it would be useful to have an obfuscated or
encrypted implementation of a signature algorithm that could be used by a mobile agent,
or computed on a high power host on behalf of a low power client. However, even if the
host could not extract a private key from the implementation, the host could potentially
sign messages other than those intended by the client and pass them off as authentic. This

68

is counter to the notion of unique authentication and non-repudiation that is desired from
public key algorithms. It is necessary to have a way to further link the message to the
private-key owner or limit the type of messages that could be signed by the program on the
untrusted host. We investigate two possible methods for doing this below. The first was
proposed by Sander and Tschudin in [42] and examines the idea of coupling the signature
algorithm with the output of a function that is to be signed. The second is a new idea
proposed here that securely allows arbitrary messages to be signed when a second piece of
information in addition to the message is provided to the host.

6.3.1 Undetachable Digital Signatures

The idea behind the “undetachable” signature scheme described in [40] is to link signatures
to the output of a function in order to prevent the host from signing arbitrary messages.
The scheme utilizes function composition (see Section 6.2.1). The assumption is that you
have a rational function f , a rational signature function s, and a verification function, v,
that can check the validity of a signature produced by the composition fsigned = s ◦ f .
The functions f and fsigned can be computed by a mobile agent to get an “undetachable”
signature consisting of a pair (f(x), z := fsigned(x)). It can be checked via v, that f(x) is
a valid output of the function f . The security lies in the inability of an attacker to recover
s from f and fsigned , i.e., to decompose a composite function. [40] presents a number of
attacks on this system and attempts to fix them, but a detailed security analysis is not
given.

This scheme can be used only if you have a mobile agent that you authorize to sign all
outputs of a particular rational function - the originator can not specify particular inputs
only. We next introduce a scheme that is more flexible and allows arbitrary messages to be
signed.

6.3.2 Verifiably Linked Signatures

We introduce here the notion of verifiably linked signatures. Here the originator provides
the agent with an obfuscated or encrypted signature scheme (to preserve the secrecy of the
private key) and an input to be signed, together with a second set of information called link
data that must be presented with the signature. The purpose of the link data is to bind the
signature on the message to the originator as well as the message as proof that the message
was intended for signature by the originator if the signature is challenged. Although the
signing host could sign an arbitrary message, it does not have the ability to produce the
proper corresponding link data.

The main application we envision is for a low power client to be able to ask a higher
power host to sign an arbitrary message without giving the host the ability to sign messages
without the client’s approval. The message is verified as usual, however, if the client wishes
to deny a message or if a signature is challenged, the client enters into a protocol to prove
or deny the validity of the signature. Here the “prover” is the originating client.

Our goal is to create a scheme with the following properties:

69

1. The link data checks with a unique message.
2. The prover can verifiably deny a signature with invalid link data.
3. The prover is unable to deny a valid signature with valid link data.
4. No one but the client (prover) can produce valid link data.
5. For low power applications, the link data must be easy to compute.

In order to construct our design we draw from the notions of undeniable signatures [9]
and chameleon hashes [25]. In undeniable signatures, a signature is produced which requires
interaction for verification. The prover can deny an invalid signature, but cannot deny a
valid one. A chameleon hash function is one for which collisions can be easily produced
given knowledge of a trap door, but computationally infeasible otherwise. We incorporate
these two ideas to produce our link data and the corresponding protocols to prove or deny
linkability to the message and originator. In order to make this feasible for low power
applications we require precomputation and storage of a number of values, but there may
be other applications for which the data can be produced on the fly.

We call the client who wishes for a message to be signed the originator. The machine or
agent enabled to produce the signature via an obfuscated or encrypted signature scheme is
called the host. The signature scheme is denoted s, with corresponding verification scheme
v. We assume the signature scheme is some obfuscatable or encryptable (e.g. rational)
function. The public key consists of the public key for the signature scheme together with a
prime p such that p = 2q + 1 with q a large prime, an element g of order q, and an element
y = gx. The secret key is the secret key associated with the signature scheme, together with
x. The originator precomputes and stores 4-tuples of the form (r, f, Z = gxr+rf , T = gr−1

)3

where r is a secret, randomly chosen number. Such a 4-tuple will be needed for each
signature.

Signature Protocol

1. To sign a message m, the originating client chooses a 4-tuple and computes ` = fm−1

(f = m`).

2. The client computes m′ = (m + x` − xr − rf)x−1 (mod q).

3. The client sends the host m together with the link data, (`, m′, Z, T).

4. The host signs the message m, the signature is (m, s(m), `, m′, Z, T).

The message is verified as usual using the verification algorithm v on the signature piece
(m, s(m)). However, in the case that the originator wishes the deny the signature or a
challenge to the signature is made, the originator (prover) and a challenger (verifier) enter
into the following protocol. There are two checks to perform. The second is interactive and
allows the prover to verifiably deny a signature.

3Whenever there is an inverse in the exponent it will always be modulo q hence we will omit writing the
“mod q” in the exponent for ease of notation.

70

Verification of Link Data Protocol

• Check 1: The verifier checks if gmy` = ym′
Z (mod p). If not, then output invalid and

stop.

• Check 2:

1. The verifier chooses a random a, b and sends the challenge C = Zagb to the prover.

2. The prover computes R = Cr−1
and sends it back to the verifier.

3. The verifier checks if R = yagmlaT b. If yes, then output valid and stop.

4. If the output does not check, the verifier issues a second challenge to the prover:
C ′ = Zegf .

5. The prover computes R′ = C ′r
−1

and sends it back to the verifier.

6. The verifier checks if (RT−b)e = (R′T−f)a. If so, the prover is consistent and the
output is invalid, otherwise the verifier is cheating.

Check 1 should hold since gmy` = ym′
Z (mod p) = gxm′

gxr+xm` if and only if m+x` =
xm′+xr+rm` which holds by construction of m′ in Step 2 of the Signature Protocol (recall
f = m`). Check 2 is similar to the undeniable signature verification protocol in [9]. If the
prover is honest and the link data is valid, then note that step 3 checks:

R = Cr−1
= (Zagb)r−1

= ((gxr+rm`)a)r−1
(gb)r−1

= gxrar−1
grm`ar−1

gbr−1

= gxagm`agr−1b

= yagm`aT b.

If step 3 does not check, then either the signature is invalid or the prover is lying. A lying
prover is caught by the repeating of the challenge and comparison of answers in steps 4− 6.
(Note that (RT−b)e = (Zar−1

)e = (Zer−1
)a = (R′T−f)a.) The following two lemmas show

that a prover cannot produce valid proof for invalid link data and that a prover trying to
deny valid link data will be caught. The proofs of the following two lemmas follow directly
from [9] with simple modifications.

Lemma 6.3.1. The prover cannot provide a valid response to invalid link data with greater
than negligible probability.

Lemma 6.3.2. The prover cannot avoid detection of inconsistency between two invalid
responses to a valid signature with greater than negligible probability.

We now show that our scheme satisfies all of our goals:

71

1. The link data checks with a unique message: Suppose there were two messages m1 and
m2 with link data (`, m′, Z, T), then Check 1 implies that

gm1y` = ym′
Z and

gm2y` = ym′
Z

⇔ gm1 = gm2

⇔ m1 = m2 (mod q).

2. The prover can verifiably deny a signature with invalid link data: This is proved by
Lemma 6.3.1.

3. The prover is unable to deny a valid signature with valid link data: This is proved by
Lemma 6.3.2.

4. No one but the client (prover) can produce valid link data: The security of this scheme
is based on the security of the discrete logarithm problem. Link data cannot be
produced directly without knowledge of the secrets x and r (or by solving the discrete
log). The data for Check 1 is created by knowing the trapdoor x, r and is infeasible to
compute otherwise (see [25]).
Both checks are required to prevent the host from being able to forge link data for a
new message. If the host modifies a message m to be mk for some k, then in order
to pass Check 1, he must modify Z, replacing it by Zgk (modifying ` or m′ properly
requires knowledge of the secret key x). However, modification of Z causes Check 2 to
fail. Nevertheless, Check 2 alone is not enough: Suppose the host modifies a message
m to be mk. The host could pass Check 2 by modifying ` to be `k−1 (Z and T cannot
be modified properly without knowledge of the secrets x, r), but this causes Check 1
to fail. Hence both checks together provide immunity against forgery.

5. For low power applications, the link data must be easy to compute: The data is
precomputed and stored, at the time of a request to sign a message, the client need
only compute a few multiplications if x−1 is also precomputed and stored.

Our protocols provide a mechanism for the originator to refute a signature that it did
not intend the host to sign, but maintains accountability of the originator to stand by
a valid signature, hence non-repudiation is retained while achieving the ability to allow
a remote host to compute signature on behalf of the originator. We believe that these
must be requirements for secure remote signatures. We note that the protocols to verify
or deny link data are not entered into for every signature, only in the case of a dispute
and so in general does not put undue demand on a low power client. However we also
note that there are several undesirable properties associated with this scheme including
the precomputation and storage required for the originator, the interactive nature and
computation-heavy properties of the verification or deny protocols, and the long length of
the signature and link data. Future work will focus on creating a scheme with fewer of these
undesired properties. The main point here was to introduce the concept and requirements
for verifiably linked signatures.

72

Chapter 7

Impossibility vs. Possibility
Results for Circuit Obfuscation

In the previous chapters, we have examined a variety of new software obfuscation techniques
that have been proposed in the past few years. Most of these techniques rely on informal
notions of secure obfuscation, therefore little can be said about their security. In order
to obtain provable security a formalized model of obfuscation needs to be constructed.
The first to initialize a formal investigation into obfuscation models came from Barak,
Goldreich, et al. in [4]. Using concepts from modern cryptography they introduced virtual
blackbox obfuscation. They show in general it is impossible to construct an all-purpose
program obfuscator under this model. Following this work, several alternative models were
proposed [31, 47]. These models were the first to construct provably secure obfuscated
programs.

Our goal in this chapter is to provide a technical summary of several different obfuscation
models [4, 31, 47]. We will explore the various approaches and give a brief summary of their
advantages and disadvantages. The organization of this chapter is as follows. In Section 7.1
we briefly review some basic notation and definitions. In Section 7.2 we discuss the virtual
blackbox obfuscation model given in [4] and provide a revised proof that circuit obfuscators
do not exist. We follow this discussion by reviewing Lynn, Prabhakaran, and Sahai, circuit
obfuscation in the random oracle model [31]. We see that password identification schemes
can be securely obfuscated if we allow the existence of random oracles. Finally, we finish
by presenting the information-theoretic circuit obfuscation of Varnovsky and Zakharov [47]
and see that password identification schemes are also obfuscatable under this model.

7.1 Preliminaries

We will use the notation PPT to stand for probabilistic polynomial-time Turing machine.
If A is a PPT, B an oracle, and x an input to A, then by AB(x) we mean the algorithm that
runs A on input x using oracle access to B. A circuit C is a directed acyclic graph in which
every node, with in-degree 0 (resp. out-degree 0) is called an input (resp. output). Every
other node is called a gate and is represented by an arbitrary 2 to 1 function f : {0, 1}2→

73

{0, 1}. The size of the circuit |C|, is equal to the number of gates contained in the circuit.

If D is a distribution, then Supp(D) will denote the measurable set of elements that
have nonzero probability. When writing x

R← D we mean x is chosen according to the
distribution of D. Whenever D is a set of binary strings of some fixed length, we will
assume D has a uniform distribution unless stated otherwise. A function µ : N → R+ is
said to be negligible, if for any positive polynomial p there exists an integer N such that
for any k > N , µ(k) < 1/p(k). We will sometimes use the notation neg(·) to denote an
arbitrary negligible function.

A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is called one-way if for
every PPT A,

Pr
x

R←{0,1}k
[f−1(f(x)) 3 y ← A(f(x), 1k)] ≤ neg(k).

Goldreich, Goldwasser, and Micali showed that if one-way functions exist, then so do pseu-
dorandom functions [19]. A polynomial-time computable predicate h : {0, 1}∗ → {0, 1} is
said to be a hard-core predicate of a one-way function f if for every PPT A,

Pr
x

R←{0,1}k
[A(f(x), 1k) = h(x)] ≤ 1

2
+ neg(k).

7.2 Obfuscators

In this section we examine several different obfuscation models [4, 31, 47]. We start our
examination by highlighting the key properties of obfuscation. We will use these concepts to
characterize the different types of models. Obfuscation in general has two main properties.
The first property functionality, states that an obfuscated program is behaviorally equivalent
to the original. Informally, this means the program is no less efficient and its input-output
behavior is identical. Most authors define efficiency to mean that the obfuscated program’s
description length and running time are no more than polynomial larger than the original.
The second obfuscation property readability, measures the unintelligibility of the obfuscation
technique. This determines the type of information being protected and how its security
is defined. Of the two properties, the second is often considered the most subjective, since
unintelligibility has many forms of interpretation.

The first model we consider was proposed by Barak, Goldreich, et al. and is called
virtual blackbox obfuscation [4]. Their work was the first to formalize the functionality
and readability properties discussed above. The virtual blackbox model is an ideal form
of obfuscation, in the sense that obfuscators behave like a virtual blackbox. This implies
that everything that can be efficiently extracted from the obfuscated program can also be
extracted by observing its input-output behavior. This type of security protects against all
forms of information extraction and is regarded as a perfect form of obfuscation. Unfor-
tunately, the main result of their paper proves that a general purpose program obfuscator
does not exist (as we will soon show).

We begin by restating the definition of obfuscation as presented in [4]. We will restrict
ourselves to circuit obfuscation throughout the rest of the section. The more restrictive
case of Turing machine obfuscation is discussed in more detail in the original paper.

74

Definition 4. (Circuit Obfuscation in the Blackbox Model [4]) A probabilistic
algorithm O is a circuit obfuscator if the following three conditions hold:

• (Functionality) For every circuit C, the string O(C) describes a circuit that computes
the same function as C.
• (Polynomial Slowdown) There is a polynomial p such that for every circuit C, |O(C)| ≤

p(|C|).
• (Virtual Blackbox) For any PPT A, there is a PPT S and a negligible function ν such

that for all circuits C∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]
∣∣∣ ≤ ν(|C|).

As you may have noticed the first two properties in the above definition satisfy the
functionality requirement for obfuscation. The virtual blackbox condition measures the
readability of the obfuscation technique. The PPT S simulates the advantage A has in
determining some information about the obfuscated circuit. Their difference should be
negligible with respect to the size of the circuit, when S is given oracle access to C. The
definition calls for an obfuscator that works over all circuits. The main impossibility results
prove that such an obfuscator does not exist. This condition may be weakened by con-
sidering circuit ensembles instead. Unfortunately even under this weakened assumption, it
is still possible to show that circuit obfuscators do not exist, provided one-way functions
exist. This result does not exclude the possibility of the existence of a securely obfuscatable
circuit ensemble. Rather, it states that not all circuit ensembles can be obfuscated. In the
following example we provide a construction of a class of circuits that are trivially obfus-
catable under this model.

Example. A family of circuits F is said to be learnable, if there exists a PPT T such that
for every C ∈ F , the probability that TC(1|C|) returns a polynomial size circuit C∗ that
computes C, is 1. Let A be any PPT algorithm as defined in the virtual blackbox property
of Definition 4 and F a family of learnable circuits. Since F is learnable there exists a PPT
T such that,

Pr[TC(1|C|) = C∗] = 1.

We define an obfuscator O as the algorithm that takes a circuit C and returns C∗ ←
TC(1|C|). Let S be the PPT algorithm that runs T using oracle C for the first half and A
for the second. S outputs A’s result. Based upon this construction we have,

∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]
∣∣∣

=
∣∣∣Pr[(A ◦ TC)(1|C|) = 1]− Pr[(A ◦ TC)(1|C|) = 1]

∣∣∣
= 0.

The previous example serves as a reference point for obfuscatable circuits. Every other
family or circuit ensemble is said to be non-trivial provided they are not learnable. It is still
an open problem whether a non-trivial case exists. To help understand why this model fails
in general we will construct a family of circuits that are unobfuscatable. Our construction
will exploit the fact that physical access is a much more powerful concept then oracle access.

75

Definition 5. We define the circuit family of multi-point functions as the set of all circuits
Cα,β , α, β ∈ {0, 1}k such that,

Cα,β(x) :=
{

β, if x = α
0k , else

In our construction we will assemble a family of circuits by gluing circuits together. Each
circuit in the family will be the combination of two other circuits, such that it’s domain
and codomain are the coproducts of the other two. This will allow us to easily decompose
the circuit in its respective halves. This combination is defined as follows.

Definition 6. Let f : A→ B and g : C → D be two functions, we define their combination
to be the function f q g : A q C → B q D, where

(f q g)(x) :=
{

f(x) ∈ B, if x ∈ A

g(x) ∈ D, if x ∈ C

The main idea of the proof is to construct a circuit Dα,β that takes circuits Cα′,β′ and
checks if Cα′ ,β′(α) = β. If it does Dα,β outputs 1, else it returns a 0. We construct a family
of circuits F = {Fk}k∈N by defining Fk as the union of Cα,β qDα,β and Cα,0k q Dα,β for
all α, β ∈ {0, 1}k. Note we can decompose the two circuits more easily by inserting a single
selection bit to determine the function we are using. Ideally we would like to decompose
the circuits so that checking Dα,β(Cα,β) = 1 is easy, whenever direct access to the circuit
is available. The main obstacle is that we cannot guarantee that the representation of the
decomposition for either Cα,β or O(Cα,β) is small enough for an input into Dα,β or O(Dα,β).
Therefore we will need a modification that will allow us to do this.

This modification will be in the form of a probabilistic polynomial-time algorithm, such
that given oracle access Dα,β and input Cα,β , it is easy to make the desired check. For
physical access to the circuit this check can be performed with certainty, even for randomized
choices in F . However, for oracle access only, we cannot determine Dα,β(Cα,β) any better
than guessing when α, β are chosen at random. This is stated formally in the following
Lemma.

Lemma 7.2.1. If one-way functions exist, then for every k ∈ N and α, β ∈ {0, 1}k, there
is a distribution Dα,β on circuits such that:

• Every D ∈ Supp(Dα,β) is a circuit of size poly(k).

• There is a polynomial-time algorithm A such that for any circuit C describing a multi-
point function, and any D ∈ Supp(Dα,β), AD(C, 1k) = 1 if and only if C(α) = β.

• For any PPT S, Pr[SD(1k) = α] ≤ neg(k), where the probability is taken over α, β
R←

{0, 1}k, D
R← Dα,β, and the coin tosses of S.

Proof: The core of the proof rests upon the construction of a circuit D that allows one
to compute C(α) without exposing the values of either α or β. This is accomplished by
encrypting the value α and simulating the outputs of each gate of the circuit C using a
homomorphic function.

76

Consider the probabilistic encryption scheme EncK(b) := (r, fK(r) ⊕ b), where r
R←

{0, 1}|K| and fK is a pseudorandom function. The existence of fK relies on our assumption
that one-way functions exist. We define an algorithm Hom, that takes as input two private
keys K, K ′, two ciphertext c and d, and a binary operation �. The binary operation � is
used to simulate the outputs of an arbitrary two to one gate contained in the circuit C and
can be specified by a 2× 2 truth table. Specifically we define,

HomK,K′(c, d,�) := Enc∗K′(DecK(c)�DecK(d)).

where Enc∗K′ denotes encryption using r = fK′(rc, rd,�) and fK′ is a pseudorandom function
taking 2|K|+4-bits to |K|-bits. The extra 4-bit input of fK′ is used to specify the operation
�. If we define the encryption of the k-bit string α as the k-tuple (EncK(α1), . . . , EncK(αk)),
then an adversary has no more than negligible success in determining α even when given
oracle access to Hom. This is expressed in the following claim:

Claim 7.2.1. For any PPT A, the encryption of an arbitrary k-bit string α cannot be
distinguished from a random string of the same size

∣∣∣Pr[AHomK,K′ (EncK(α), 1k) = 1]− Pr[AHomK,K′ (s, 1k) = 1]
∣∣∣ ≤ neg(k),

where s
R← {0, 1}|EncK(α)|

For a pair of keys K, K ′ and k-bit string (r1, . . . , rk) we construct the circuit family Dα,β

as the family of all circuits

Dα,β,K,K′,(r1,...,rk) := EncK(α) q HomK,K′ q BK,β

where BK,β is an algorithm which when fed a k-tuple of ciphertext (c1, . . . , ck) outputs 1
if for all i, DecK(ci) = βi, and EncK(α) is the encryption of α using ri for each bit αi.
The distribution Dα,β is defined as the family of circuits Dα,β,K,K′,(r1,...,rk) over uniformly
selected keys K, K ′ and (r1, . . . , rk).

The first property of the Lemma states Dα,β,K,K′,(r1,...,rk) is a circuit with size polynomial
in k. This is fairly straight forward since the pseudorandom function used in the probabilistic
encryption scheme can be efficiently generated in poly(k). Similarly both HomK,K′ and BK,β

can be computed in poly(k). Hence the claim follows.

The second property states that there exists an efficient algorithm A that can check if
C(α) = β using only oracle access to Dα,β,K,K′,(r1,...,rk). This is clear since we can use the
homomorphic function to calculate the encrypted output at each gate in the circuit C, see
Figure 7.1. Since C is a multi-point function this should take no more than poly(k) steps.
We can then use BK,β to then check if the final output decrypts to β.

For the third and final claim we must show that for any PPT S, S has only negligible
probability of finding α when given oracle access to Dα,β,K,K′,(r1,...,rk). Since β is inde-
pendent of α,K,K ′, and (r1, . . . , rk) the probability that S queries BK,β at a point that is
nonzero is negligible. Therefore we can remove oracle access to BK,β with only a negligible
effect on the success of S. Based on our previous claim it follows S cannot determine α
with any more than negligible success, because if it could it would be able to distinguish

77

Figure 7.1. Gate by gate emulation of a circuit for k = 3.

the encryption of α from a random string.

Formalizing our previous argument we now state the main Proposition.

Proposition 1. If one-way functions exist, then circuit obfuscators do not exist.

Proof: We will prove this by contradiction. Suppose there exists an obfuscator O and let
Cα,β be a circuit computing a multi-point function. For each k ∈ N consider the following
two distributions,

• Fk : Choose α and β uniformly in {0, 1}k, D
R← Dα,β. Return Cα,β q D.

• Gk : Choose α and β uniformly in {0, 1}k, D
R← Dα,β . Return Cα,0k q D.

where Dα,β is the distribution on circuits as given in Lemma 7.2.1. Let A be the PPT
algorithm guaranteed by Property 2 in Lemma 7.2.1, and consider a PPT A′ which on
input a circuit F , decomposes F = F0 q F1 and evaluates AF1(F0, 1k). Thus, when fed a
circuit from O(Fk) respectively O(Gk), A′ is evaluating AD(C, 1k) where D computes the
same function as some circuit from Dα,β and C computes the same function as Cα,β .

Let Hk be the ensemble of circuits that runs either Fk or Gk with 1/2 probability. We
claim that at least one of the differences

∣∣∣Pr[A′(O(Fk)) = 1]− Pr[SFk(1k) = 1]
∣∣∣ and

∣∣∣Pr[A′(O(Gk)) = 1]− Pr[SGk(1k) = 1]
∣∣∣ (7.1)

is not bounded above by a negligible function. If we can show for any PPT algorithm S
∣∣∣Pr[SFk(1k) = 1]− Pr[SGk(1k) = 1]

∣∣∣ ≤ neg(k).

then our claim will follow since Equation 7.1 becomes,
∣∣∣1− Pr[SFk(1k) = 1]

∣∣∣ and
∣∣2−k − Pr[SGk(1k) = 1]

∣∣.

78

Let E be the event that at least one of the queries to the left hand of the decomposition
is non-zero for Cα,β . Note, this probability depends only on the choice of α and β and not
on Fk or Gk. Then,

∣∣∣Pr[SFk(1k) = 1]− Pr[SGk(1k) = 1]
∣∣∣

=
∣∣Pr[SFk(1k) = 1 | E] · Pr[E] + Pr[SFk(1k) = 1 | E] · Pr[E]

− Pr[SGk(1k) = 1 | E] ·Pr[E]− Pr[SGk(1k) = 1 | E] ·Pr[E]
∣∣

=
∣∣∣Pr[SFk(1k) = 1 | E]− Pr[SGk(1k) = 1 | E]

∣∣∣ · Pr[E].

since Pr[SFk(1k) = 1 | E] = Pr[SGk(1k) = 1 | E]. From the previous Lemma Pr[E] must be
negligible and hence the above claim follows.

Choose any increasing positive polynomial p. By Property 3 of the virtual blackbox
model there exists an integer N and a PPT S, such that for every circuit C with |C| > N ,

∣∣∣Pr[A′(O(C)) = 1]− Pr[SC(1|C|) = 1]
∣∣∣ <

1
p(|C|) .

In our construction of the circuit ensemble Hk , we will assume each circuit has size kt for
some integer t ≥ 1. If it doesn’t we can add gates so that it does. Without loss of generality
suppose that the first equation in Equation 7.1 is not negligible. We can replace the input
into S from 1k to 1kt

, since there is an efficient one-to-one relationship. Therefore there
exists an infinite number of k satisfying,

∣∣∣Pr[A′(O(Fk)) = 1]− Pr[SFk(1kt
) = 1]

∣∣∣ >
1

p(k)
.

But,
∣∣∣Pr[A′(O(Fk)) = 1]− Pr[SFk(1kt

) = 1]
∣∣∣

=
∣∣∣

∑

C∈Fk

(
Pr[A′(O(C)) = 1 | C ← Fk]− Pr[SC(1|C|) = 1 | C ← Fk]

)
Pr[C ← Fk]

∣∣∣

≤
∑

C∈Fk

∣∣∣Pr[A′(O(C)) = 1 | C ← Fk]− Pr[SC(1|C|) = 1 | C ← Fk]
∣∣∣ Pr[C ← Fk].

which implies there exists a circuit C such that
∣∣Pr[A′(O(C)) = 1]− Pr[SC(1|C|) = 1]

∣∣ >
1/p(k). Thus for k > N , we have a contradiction.

To remove the one-way function condition we will show how to construct a one-way
function out of an obfuscator. This will prove circuit obfuscators do not exist uncondition-
ally.

Lemma 7.2.2. If efficient obfuscators exist, then one-way functions exist.

Proof: Suppose that O is an efficient obfuscator. For α ∈ {0, 1}k and b ∈ {0, 1}, define
Cα,b : {0, 1}k → {0, 1} as the circuit that outputs b if the input x = α, and 0 otherwise. We

79

claim that the collection of functions fk(α, b, r) := Or(Cα,b), k ∈ N and using coin tosses r
is one-way.

It is sufficient to show that returning α can be achieved with no more than negligible
success, since α must be part of any preimage of Or(Cα,b). But this is equivalent to showing
b is a hard-core bit, since if we can extract α then we can also find b. Observe for any PPT
S,

Pr[SCα,b(1k) = b] ≤ 1
2

+ neg(k), α
R← {0, 1}k, b R← {0, 1}

Using Property 3 of Definition 4 it follows that for any PPT A,

Pr[A(fk(α, b, r)) = b] = Pr[A(Or(Cα,b)) = b] ≤ 1
2

+ neg(k).

over random choices of α, b, and r. Therefore b is a hard-core bit of fk, which implies it is
one-way.

Using the previous Lemma, we have the following main result.

Corollary 1. Efficient circuit obfuscators do not exist in the virtual blackbox model.

It is clear based on the above result that a single method of obfuscation will not work
over all circuits. Therefore in order to get positive results, obfuscators need to be more
focused by considering specific applications. We examine this approach by looking at the
feasibility of obfuscating symmetric-key encryption schemes. This example stresses the
difficulty of obfuscation in general.

Ordinarily there are considerable differences between obfuscating an encryption scheme
and an arbitrary program. For one, we can usually assume the details of the algorithm
for the encryption scheme is publicly available. Therefore obfuscating the algorithm itself
would serve very little purpose. The only unknown piece of information is the secret key.
Thus an obfuscator only needs to provide protection against key extraction. This approach
is different than the approach taken by the virtual blackbox model, since it protects against
all forms of information extraction, including key recover. By limiting ourselves to specific
types of information hiding, we increase the tools available for obfuscation. We believe
at least in part, that obfuscation should be application specific, since different types of
applications call for different types of protection.

Definition 7. (Key Recovery) A symmetric-key encryption scheme SE = (K, E, D) is
said to be obfuscatable if the following conditions hold

• (Functionality) For each private key K, there exists a circuit EK that computes the
encryption scheme SE .
• (Readability) For any PPT A,

Pr
K

R←K(k)

[A(EK) = K] ≤ neg(k).

Unfortunately in [4] the authors prove the above definition is unattainable for certain
symmetric-key encryption schemes. This negative result shows just how powerful physical

80

access to a circuit is. So far we have focused our attention on the impossibility results
of several different obfuscation models. We now switch directions and look at ways to
relax these model. We will see under certain conditions obfuscation is possible for specific
applications.

The next model we look at was proposed by Lynn, Prabhakaran, and Sahai and is called
the random oracle model [31]. This obfuscation model is a variant of virtual blackbox obfus-
cation, with one distinct difference. The difference is that, circuits now have the capability
of accessing random oracles. This is a more powerful version of blackbox obfuscation, since
any obfuscatable circuit in the virtual blackbox model is also obfuscatable by adding ran-
dom oracles. The idea of using an oracle for obfuscation is quite powerful, since it assumes
that part of the program is inaccessible. From a hardware perspective, the oracle may be
viewed as a tamper resistant random function. Circuit obfuscation in the random oracle
model is defined as follows.

Definition 8. (Circuit Obfuscation in the Random Oracle Model [31]) A prob-
abilistic algorithm O is a circuit obfuscator for a family of circuits F = {Fk}k∈N if the
following three conditions hold:

• (Approximate Functionality) There exists a negligible function µ such that, for all k
and C ∈ Fk we have

Pr[∃ x such that OR(C)(x) 6= C(x)] ≤ µ(k).

• (Polynomial Slowdown) There is a polynomial p such that, for all k and C ∈ Fk,
|O(C)| ≤ p(k).

• (Virtual Blackbox) For any PPT A, there is a PPT S and a negligible function ν such
that, for all k and C ∈ Fk

∣∣∣Pr[AR(OR(C)) = 1]− Pr[SC(1k) = 1]
∣∣∣ ≤ ν(k).

The main result of [31] shows that password identification schemes are obfuscatable
under this model. A password identification scheme is a family of point functions {Fk}k∈N,
such that each function fα ∈ Fk , outputs a 1 if x = α ∈ {0, 1}k and 0 else. A point function
is just a multi-point function with a binary output. We can construct an obfuscator in the
random oracle model for this family using the following procedure. Let R be a random
oracle taking k-bits to 2k-bits and OR(fα) the circuit that stores r ← R(α), such that on
input x ∈ {0, 1}k checks if R(x) = r. If equality holds OR(fα) return a 1, else a 0. Based
on this construction we have the following result.

Proposition 2. Password identification schemes are obfuscatable in the random oracle
model.

This result is possible, because of the addition of the random oracle. The oracle acts
as a blackbox thereby protecting the password. Other oracle obfuscation models can be
constructed using these same ideas. The main disadvantage in using this model is the
oracle implementation. If an external source is not available, then the oracle has to be

81

implemented internally. This puts the burden of security on constructing an obfuscated
random function. The advantage in this approach is that the security has been reduced to
solving a single problem. The disadvantage is that a solution may not exist.

The final model we look at is called the information-theoretic model and was proposed by
Varnovsky and Zakharov [47]. In this model, the authors take a more pragmatic approach
by specifying a secret predicate for obfuscation. The secret predicate is chosen based on
the application and is used to define the type of information to be hidden. This is similar
to the key recovery obfuscation model discussed earlier. Further, this model abandons the
notion of blackbox security in favor of information theory. Specifically they define a secret
predicate P over an ensemble of programs {Fk}k∈N. The predicate P can be considered
a random variable on Fk, by defining Prf←Fk

[P (f) = b], b ∈ {0, 1}. An obfuscator O is
said to be secure, if for any adversary A, the mutual information between P and A(O) is
negligible for random choices f ∈ Fk .

The mutual information between two random variables is a measurement of the amount
of information one random variable contains about the other. The smaller the value the less
dependence they share. The mutual information between two random variables is defined
as follows.

Definition 9. Let X and Y be two random variables with a joint probability mass function
p(x, y) and marginal probability mass functions p(x) and p(y). The mutual information
I(X ; Y) between X and Y is defined as,

I(X ; Y) :=
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)
p(x)p(y)

Intuitively, mutual information security measures the difficulty in determining some
information about X , given Y only. If X is a predicate P and Y an obfuscator O, this
means on average it is difficult to determine P (C), given only O(C) for random choices of
C. This motivates the following definition.

Definition 10. (Information-Theoretic Circuit Obfuscation [47]) A probabilistic
algorithm O is a circuit obfuscator for a circuit ensemble F = {Fk}k∈N and secret predicate
P , if the following three conditions hold:

• (Functionality) For every k and circuit C ∈ Fk, the string O(C) describes a circuit
that computes the same function as C.

• (Polynomial Slowdown) There is a polynomial p such that, for all k and C ∈ Fk,
|O(C)| ≤ p(k).

• (Mutual Information Security) For any PPT A, there is a negligible function ν such
that for all k,

I(P ; A(O)) ≤ ν(k).

Since mutual information only measures average security, we cannot say for certain
whether all circuits are securely obfuscatable. It may be the case that certain circuits are
easy to break, while others are very difficult. This is not a particularly attractive quality
for many types of applications. Nonetheless it is useful tool for measuring security. As

82

Figure 7.2. Possibility results for circuit obfuscation.

an example the authors show that password identification schemes are obfuscatable. They
start by constructing an ensemble of programs, that contain both a simple identification
scheme and free access simulator. The predicate P is chosen as a distinguisher between the
two programs. Given that one-way permutations exist we have the following main result.

Proposition 3. If one-way permutations exist, then the secret predicate P can be securely
obfuscated for password identification schemes.

The above result was the first possibility result for a formalized obfuscation model.

In figure 7.2 we have a visual description of the obfuscation models we have discussed
in this section. Based on the results, it is unclear if any of these models will survive as a
security standard. We believe there is still a great deal more research that can be achieved.
For future work, we plan to incorporate the various ideas presented in each model into
our own. We will focus on developing models that are geared towards specific types of
applications. The predicate based information hiding approach given by the information-
theoretic model holds promise and we will investigate further into extending these ideas.
Given the relative immaturity of obfuscation, we are optimistic in developing obfuscation
models that expand our current understanding of the field.

83

Chapter 8

Future Obfuscation Work

As we have already noted a theory of obfuscation is not available today. If and when we
have one, we will have more than intuition at our disposal when we compare two obfuscated
programs. We would like to be able to determine which program provides more obfuscation.
This would enable us to rank order obfuscations. The goal, unfortunately, is more grandiose:
we would like to be able to determine the lower bounds in time for an adversary to break
the obfuscation. In this chapter we consider different possibilities for such a theory.

Collberg [12] presents a number of techniques. It is logical to presume that if one of these
techniques is good, then two might be better. But it is possible that some sets of techniques
work against each other, weakening the set, possibly reducing the obfuscation, maybe even
making the program easier to understand. We have no guide here – we are flying blind,
so to speak, so we do not know what will happen. Instead of applying a set of techniques,
perhaps we could iteratively obfuscate and deobfuscate, choosing obfuscation techniques at
each iteration. Given the reasonable assumption that deobfuscators do not always generate
the original program, this approach might mimic the “wearing out” of code that makes
legacy code eventually unmaintainable. This appears to use entropy to our advantage – an
unusual arrangement. For this application we would like to know the relationship between
number of iterations and obfuscation strength. But again we have no guide. Worse, the
inevitable bugs in the obfuscators and deobfuscators work against us. What confidence
do we have that the final obfuscated product has the same input/output behavior as the
original program? This line of reasoning suggests that for a theory of obfuscation we need
to get “below” the techniques and look for an ideal, for a perfect obfuscation system.

Cryptography has a model of a perfect cryptosystem, namely the Vernam cipher, also
known as the one-time pad: a random and never re-used key stream of zeros and ones is
xored with the input, which also consists of zeros and ones. Presuming that the key stream
is random and is never re-used, then the cipher stream is perfectly secure. This system has
actually been used, though it is impractical for most purposes. The value of the scheme is
primarily its ideal nature. Is there a similar ideal scheme for obfuscation that would serve
as a starting point?

Yes, as a matter of fact, there is such an ideal scheme for obfuscation. Unfortunately
it is even less practical than the Vernam cipher. Here is the scheme: ask the adversary to

84

run all possible programs for n steps - the length of our program - on all possible inputs,
reporting the output whenever a program halts;1 when the input and program we want
halts, then we have our answer. At some point thereafter we tell the adversary to stop
charging us for compute cycles. We could call this “Vernam obfuscation,” to suggest that
this is a perfect method of obfuscation. Surprisingly there is no obfuscation involved! Our
program is run as is. We protect our program by hiding it amongst many other programs.
Although this is a completely impractical approach it does provide us with a starting point.

We can make Vernam obfuscation increasingly efficient2 by limiting the size and the
range of the input or the number of programs executed, but as we do so we provide the
adversary with more information, narrowing the adversary’s search space. Does this process
narrow the adversary’s search space faster than what we gain in efficiency? What is the
shape of the function that describes the trade-off between efficiency and security?

Unfortunately, the Vernam obfuscation approach seems to lack a “workload advantage.”
We want to show two results simultaneously. First, we want to show that for a given program
with n steps that the adversary has to pay an exponential price to break the obfuscation.
That is, the adversary has to consider mn programs, where m > 1. We could call this
“possible program explosion.” Second, we want to show that for the same program we have
to pay only a linear price, or maybe only a polynomial price, to create the obfuscation and
execute the resulting obfuscated program. If we can show these two results, then we have
the adversary “over a barrel,” as the expression is, and we are on our way to a theory of
obfuscation.

Perhaps we could construct Vernam obfuscation by building a program that uses p in-
structions for each instruction in the original program. Rivest [38] presents a cryptographic
approach, called “winnowing,” that provides privacy via integrity that is similar to this.
The idea of winnowing, in the extreme, is that the sender sends both a zero and a one
for each bit in the message. For each zero and for each one, the sender includes a Message
Authentication Code (MAC) such that for each pair of bits only one MAC will authenticate.
The receiver recovers the message by “winnowing,” by discarding as “chaff” the bit in each
pair that does not authenticate. The message, like an obfuscated program, is in plaintext,
but the message is afforded privacy because it is hidden, in a sense: the adversary does not
know which bit of each pair is part of the message. So the adversary has to consider all 2n

possible messages. This is the workload advantage. Can we make this approach work for
obfuscation?

We could begin by considering an approach that for simplicity uses two instructions
for each of the n instructions in the original program. We obfuscate by adding a “phony”
instruction for each real instruction. The adversary is forced to winnow the real instructions
from the phony ones.

The problem we have that the winnowing message-sender does not have is state: state
persists between instructions. The adversary in the winnowing case has to consider all 2n

possible messages because either the zero or the one of each pair can be in the message. But
this is not the case with our program. For example, the following shows pairs of instructions

1Of course any reasonable adversary would run the programs using dovetailing so that he is not caught
trying to complete a program that does not halt.

2Or perhaps it is better to say, “decreasingly inefficient.”

85

for each step in the obfuscated program:

step i: load register 1 from address ...
(another instruction that does not use or load register 1)

step i+1: load register 1 from address ...
(another instruction)

The adversary knows that the instruction in step i from the original program is not the
load, simply because that load is immediately overwritten in the next step.3 The first load
is “dead” code.

Our task is to construct a program such that any (or at least enough) of the instructions
at step i could be part of a program that uses any (or at least enough) of the instructions
at step i+1 (or some subsequent step), for any (or at least enough) i in the range of n. This
is the first piece of the puzzle.

The second piece of the puzzle is the use of a key. Like cryptography the same ob-
fuscation algorithm operating on the same program should produce a different obfuscated
program given a different key. Using Kerckhoff’s assumption, the security of the scheme
should rest as much as possible on the security of the key alone. If we can align obfuscation
with that assumption, then we can use results from cryptography to help with a theory of
obfuscation.

Assuming the simplest approach, namely that the obfuscator adds one instruction for
each instruction in the original program, the key could be used to determine whether the
original or the phony (i.e., the added instruction) instruction comes first, as suggested in
Table 8.1.

We presume that the key would be necessary to extract the results of program execution.
This would suggest that a superset of the output of the original program should be sent
back as a result of execution to the obfuscators computer. Perhaps that superset could
be something like a trace [36]. Although this suggests that this approach could provide
execution integrity, and privacy of execution, code, and data,4 it is not clear what output
should be generated.

The key could, like a one-time pad, have as many bits as the program has instructions
and thus be just as random as keys for the Vernam cipher. Unlike the Vernam cipher the
key never has to leave the owners control.

Unfortunately we have not addressed how we get a sufficient possible program explosion
via this approach. That is, which instructions do we use for the phony ones? Is either
puzzle piece possible? To our knowledge these are open questions.

However, before we leave this topic, consider another twist. Rivest points out that what
we consider “chaff” could actually be another message.5 In fact there could be m messages

3Unless, of course, the instruction at step i in the original program is not the equivalent of a no-op.
4This approach is too loosely defined to determine if it precludes the adversary from violating execution

integrity by returning bogus output. Since some of the instructions inserted for obfuscation will execute,
perhaps they could also serve to generate a result that provides a check on execution integrity.

5That is, one mans wheat is another mans chaff.

86

Step Sample Key Bit * Instruction Sequence

0 0 (real instruction 0)
(phony instruction 0)

1 1 (real instruction 1)
(phony instruction 1)

2 1 (real instruction 2)
(phony instruction 2)

3 0 (real instruction 3)
(phony instruction 3)

...

Table 8.1. Initial Part of an Obfuscated Program (* If the ith bit

of the key is 0, then the real instruction for the ith pair is the first in

the pair, otherwise it is the second in the pair.)

all interleaved in some random way known only to the sender.6 Each of the m recipients,
using its unique key, can separate its wheat (the bits in the message intended for that
recipient) from the chaff (the bits intended for some other recipient, or the bits that really
are chaff, included to confuse the adversary). As the broadcast stream continues, some
messages complete while new ones begin as the quantity of true chaff waxes and wanes.
Applying this to obfuscation, can we combine two programs such that it is infeasible for
the adversary to untangle them?

The problem again is state. The state of a program includes the contents of some
registers (at least the program counter) and some portion of memory (at least the data
that is contributing to the output). We are tempted at this point to appeal to functional
programming [32] because of referential transparency: a functional programming function
depends only on its inputs. The same function always returns the same results given the
same inputs; it is independent of state. This is a step toward messages that consist of zeros
and ones that also carry no state. This suggests that instead of considering instructions
as our basic unit of obfuscated programs, as we have in the discussion above, we should
consider functional programming functions.7 This is counter-intuitive because these objects
are at a higher level of abstraction than instructions and thus more likely to be easier to

6The collecting of many programs in order to protect each has some similarities to the Crowds system
for anonymity of web transactions [36].

7There is a subtlety here. What the adversary sees could consist of assembly language statements
generated by a compiler, just as we have tacitly assumed in the discussion further above. But if we are using
functional programming functions, then alternatively and without loss of protection what the adversary
sees could consist of high-level language statements since we presume that the adversary could decompile
that assembly language into a high-level language. If the obfuscation is done properly, then the high-level
language form would still be too difficult to understand.

87

understand.8 But such functions are more mutually independent and thus more amenable
to winnowing. Recall that the zeros and ones in winnowing are by themselves perfectly easy
to understand. Is there light ahead?

Finally we need to consider steganography. This is the study of hidden messages. The
goal is for the adversary to be unaware of even the existence of a hidden message. Would
this work for obfuscation? That is, could there be such things as hidden programs?

8Indeed, the intent of functional programming is to make programs easier to understand, not harder.

88

Chapter 9

Verifying Remote Execution

In this chapter, we discuss Remote Execution: A computing task (or portion) is sent to
a remote computer, which sends back the answer. This is a slightly broader classification
than our definition of mobile code where the code has to move by itself. The results here
apply to any execution that is done on an untrusted host.

One reason for doing Remote Execution would be to farm out a computer job. Perhaps
special hardware or software is available at the remote site; or the remote site has greater
computing power; or we have little computing power (e.g. a smart card); or we want to
subdivide a task among many computers. Depending on the parties’ interests, there are
various incentives to cheat. We consider the rather simple motivation that the remote site
might simply want to shirk the job, and report back a fake or approximate answer, while
collecting full payment. Or the remote site might want to lie so we will make use of its
bad answer. We will assume the remote site is a least pretending to be honest. Depending
on the value of the computation and its consequences, we may be satisfied with various
probabilities of detecting cheating: a 50% chance of detection would prevent a well-known
remote site from making a career of cheating; but we might want near-certainty of detection
in other cases. The amount of loss/gain from undetected cheating, and the penalty for
getting caught, will be factors in this decision.

We won’t address some of the interesting metaphysical problems: Perhaps we want to
mislead a remote site into thinking it had successfully lied to us, or even try to entrap
a remote site by offering an opportunity to cheat. If there’s payment involved for doing
computation, we might need to provide evidence of cheating to a judge. This might require
us to disclose information we don’t want to reveal.

9.1 GIMPS

There are a fair number of cooperative distributed computations being done over the net,
usually by volunteers. And there are companies trying to make a business of brokering
spare compute cycles for big computations like weather and rendering of movies.

As an example, we’ll briefly review one distributed computation, The Great Internet

89

Mersenne Prime Search (GIMPS). GIMPS is looking for prime numbers P such that 2P − 1
is also prime. The computation has been going on for nearly a decade, finding a new
prime every eighteen months on average. There are tens of thousands of participants, and
perhaps a hundred thousand computers involved. Volunteers download the software, which
runs “unobtrusively”, at low priority, on their computer. The software contacts a central
server for an assignment, a particular prime P to test. The project is presently working
on primes P in the range 20M - 40M , although a few users are working on much larger
numbers. An individual prime P takes a few weeks or months to test. Typically, the prime
P will generate a non-prime 2P − 1, and the remote machine reports the failure and a
small 64-bit datum from the end of the computation as a kind of checksum. About 25%
of the project effort is devoted to double-checking. Each prime is P assigned a second
time, and a homomorphic version of the prime test is run, which should produce the same
final checksum. The checksums are compared at the server. They usually match, but
about 2% of the cases don’t match, and a triple-check is assigned. In the rare, happy
occasion when a new Mersenne prime is located, the exponent P is kept secret for a few
weeks while the GIMPS managers run two independent checks with different hardware and
different software. There have been a couple of false alarms, probably caused by undetected
hardware problems. (The client software runs checks during the computation, and catches
most hardware errors.)

The GIMPS project shows the best case for remote distributed computation. The
volunteers are mostly honest, and the hardware mostly works. There’s not much in the
way of valuable secrets, and not much incentive to cheat. Each test is independent, so
there’s no grand final total to be corrupted if any input is wrong. Any computation can be
rechecked. Errors are low consequence, at worst embarassing. As machines get faster, past
computations are repeated independently, so any error will eventually be detected.

In this best case, enough assurance is provided by simply running each prime twice, doing
the double-checking process with the 64-bit check value. Most of the project computation
goes into testing primes P and reporting “2P − 1 is not prime”. The high-value results,
the occasional “2P − 1 *is* prime” answers, are double and triple checked on independent,
different, hardware and software. But the low-value chaff primes are usually double-checked
on the same hardware (most machines are late model Intel Pentiums), with the same soft-
ware (GIMPS is the best program around, and others are less efficient). Double-checking
is one or two years behind primary testing, since most volunteers prefer to work on the
frontier of testing fresh primes.

Let’s think about cheating.

1. The most obvious cheat is to fake a report of a new Mersenne prime. This will cause
great excitement for a few days, until the double and triple checks are completed.
When the software nears the end of testing a particular prime P , it saves some near-
the-end state information. When P is lucky, the state information is returned to the
server. This lets the managers run a pre-double-check by repeating the last snippet of
the checking computation, providing a quick forecast of how the full double and triple
checks will come out.

2. The next most obvious cheat is to reserve primes from the server and never report an
answer back. This is handled by timing out reserved primes and reassigning them.

90

(Any volunteer project has lots of dropouts.) There are the expected problems with
slow machines taking too long, and needing extensions of the timeouts.

3. An opponent could “gum up the works” by reserving a block of primes and reporting
false answers, claiming to have completed tests that weren’t actually run. This would
go undetected for two years, until the double-checks began rolling in. Presumably the
project managers would try to locate and discard results contributed by the offender,
and schedule the suspect primes for priority retesting. If the opponent were clever
enough to lie about the identity of the machines contributing bad results, it could
be difficult to isolate his bad data. The project would be forced to allocate most of
its resources to double checking past reports, and ultimately to keep double-checking
current. This would significantly slow the search.

4. An opponent could trap a report of a new Mersenne prime. He might simply pretend
to have dropped out, or might actually send in a fake checksum. In the latter case,
he’d delay rediscovery of the new prime for two years, until the double checkers caught
up. He could conceal the prime for many years by getting the double-check assigned to
himself or a cohort, and reporting the same fake checksum. This would go undetected
until a GIMPS successor came along and repeated the old computations. (People with
new software always recheck old results, both to check the new software and to check
the old results. Often some minor errors are found in the old stuff.) Of course, the
opponent would have to be very lucky to have picked a prime P that generates a new
Mersenne Prime, a one-in-a-million chance. Or he might have superior computing
resources and have already found such a prime, and contrived to have the GIMPS
server assign it to him. Or he might have a new software or hardware improvement
to search more effectively, or new mathematics that suggested which primes are more
likely to be winners.

The GIMPS project is in a relatively benign environment: No obvious opponents, and
no particular incentives to cheat. In such an environment, the most efficient safegaurd is
simply to repeat each computation, and trust to luck that the errors that do occur will be
independent. Doing homomorphic repeats, instead of exact repeats, helps. The cost of this
approach is “only” a factor of 2 in repeated computations.

9.2 Distributed Search, with Opponents

Now consider a hypothetical distributed search. The goal is to discover a secret 64-bit en-
cryption key, that maps a particular known plaintext value to a particular known ciphertext
value. Volunteers will be assigned (or reserve) portions of the key space to search, and re-
port back with a checksum of all the encryptions in the range. In this scenario, an opponent
who knew the key and wanted to thwart the search could get the magic key range assigned
to his own machine, and report a fake checksum. If the project has double-checking, he
would need to get the double-check assignment too. If the project managers can’t be sure
that their volunteers are independent (and identities are hard to check over the internet),
they could have a problem. One safegaurd would be to have the server assign key ranges
in a random order, making it hard for the opponent to get the magic range assigned to
himself. This would still be vulnerable if there were many opponents: If half of the “volun-
teers” are actually zombies from a well-organized opposition, they could still get the magic

91

range assigned by luck. A more advanced counter measure is to make the key searching
random. Instead of assigning key ranges, each volunteer independently generates random
keys and tries them. This approach is unaffected by opponents and fake volunteers, since
they are equivalent to dead machines. The drawback is that the key space is multiply cov-
ered. There’s no way to know that every key has been tried, and reports of completed effort
can’t be trusted since they might be from zombies. Double checking is pointless; the effort
may as well go to extra primary searching. The degree of multiple coverage isn’t too bad:
A plain search would expect, on average, to find the key after covering .5 of the key space.
A random search, with random repetitions, will expect to find the key after log2 = .693
trials of the key space, a 39% penalty. This argues that, even in a benign environment,
double checking is a waste of time. (This conclusion depends on whether, in the event of an
unsucccessful search, we need a firm believable report of failure. Things also change slightly
if there might be several keys, and we must find all of them.)

9.3 Modular Exponentiation

We consider the problem of remotely computing modular exponentiation. In the simplest
case, we want to package up a problem WX (mod Y), and ship it to a remote machine, and
the machine will report back the answer. We presume we are computationally challenged,
and find the problem too hard to tackle directly. (Notation: every exponentiation in this
section is mod Y , but sometimes we’ll leave off saying mod Y to keep the formulas simpler.]
Our problem is how to accomplish this result when we don’t especially trust the remote
machine. Our approach will be to send out several problems, knowing that the answers
must be interrelated. We hope that we can use the relationships to detect any cheating by
a dishonest remote machine. The idea is that the interrelationships between the answers
are secret, known only to us, and the remote opponent can’t make a goal directed change in
the answers while preserving the checking relations. Of course it could send back garbage,
or simply refuse to reply. This isn’t very helpful to us, but we’ll have no confusion about
the validity of any answers.

Most of our results also apply to the elliptic curve case, where the problem is to compute
K ∗P , where K is an integer and P is a point on a non-secret elliptic curve. Any important
differences will be noted. In most of our modular exponentiation examples, we assume that
the modulus Y is prime, or that its primality doesn’t matter. Some additional opportunities
arise if Y is a composite, and we know the factors (and hence φ(Y), the order of the
multiplicative group) while the opponent doesn’t. However, in this case we may need to
protect the value of φ(Y).

9.3.1 Exponentiation with Multiple Remote Machines

We first dispose of a simple example. If we have multiple independent machines we can send
our problems to, then double-checking is the cheapest approach. If we wish to conceal the
value of W , we can split the problem in two with the technique of Blinding. We generate a
random number R in the range [2, Y −2]. If Y is composite, we also require GCD(R, Y) = 1.
We compute V = W/R (mod Y), and ask for independent remote machines to compute

92

RX (mod Y) and V X (mod Y). We compute the modular product (RX) ∗ (V X) (mod Y),
which is our answer, since W = R ∗ V . [We assume we have enough computing power
to do some modular arithmetic, but not very much. The modular reciprocal required for
computing W/R could be a nuisance, but there are mitigating methods. When Y is prime,
we can compute V ′ = RW (mod Y) instead of V , and ask for remotes to compute V ′X and
RY−1−X . Then WX = V ′X ∗RY−1−X .]

If we wish to conceal the exponent X , we can generate a random S in the range [1, S−1]
and issue the two problems WS and WX−S . The answers are then multiplied to obtain
WX . If Y is prime, we can instead choose S from the range [1, Y − 2], and replace the
exponent X − S with X − S (mod Y). This has the virtue of concealing even the rough
magnitude of X.

If we are willing to use a multi-round scheme, where we get back some exponentials and
then send out more problems, there’s another technique to conceal X : We choose random
T in [2, Y −3] and relatively prime to Y −1, and compute T ′ = X/T (mod Y −1). Then we
ask for remote computation of WT (mod Y) and then, in a second phase, (WT)T ′

(mod Y).

We can conceal both W and X by first choosing R and then S1 and S2, or first choosing
S and then R1 and R2.

We need to impose a “no subcontracting” condition on our remote machines, to prevent
an opponent from collecting our problems and deducing the original W and/or X . A no-
sub condition can be hard to enforce, and even hard to check. There was an analogous
real-world incident in the late 1980s. A phone company substation near Chicago burned
down, taking out substantial cross-country bandwidth. Some companies had provided for
bandwidth disruption by purchasing backup bandwidth from independent vendors. Sadly,
because of subcontracting, the independent bandwidth was actually traveling on the same
wires as their primary bandwidth, and the independent backup was worthless.

We can achieve modest confidence in the confidentiality of W, X if we subdivide the
problem in many pieces for many remote machines. This sets the opponent a harder data
collection problem. He doesn’t need to collect all the data, since he may be able to infer
one of W or X from repeated values in the problems. We can make his inference problem
harder by issuing some dummy problems. We must wait for all the answers to come back,
even though we are planning to ignore some of them, to avoid giving an eavesdropper hints
about which problems are the dummies.

Each of these steps means additional modular multiplies when we carry out the recon-
struction phase. We need to take care that we’re actually saving work. We’ve also turned
one problem into many, but we assume the remotes are more capable, so this is less of a
consideration.

We’ve ignored the problem of concealing the modulus Y . A modest amount of ob-
fuscation can be achieved by multiplying Y by a large prime Z, or several large primes
Z ′ ∗ Z ′′ ∗ Z ′′′ etc. The base is randomized by adding a random multiple of Y , with the
multiplier being uniform in [1, Z] (or [1, Z ′Z ′′...]). The exponent may be randomized by
adding a random multiple of Y − 1, (φ(Y) for composite Y), with the multiplier uniform
in [1, Z − 1] (or [1, (Z ′ − 1)(Z ′′ − 1)...]). The modulus Y must always be concealed in the
same multiple (such as Y Z). If two different multiples of Y are used, such as Y Z and Y Z ′,

93

the opponent can usually expose the number Y by taking the GCD of the two concealing
moduli: GCD(Y Z, Y Z ′) = Y ∗GCD(Z, Z ′), and usually GCD(Z, Z ′) = 1. For us to remove
concealment, we simply take any residue computed mod Y Z and reduce it mod Y .

9.3.2 Exponentiation with Just One Remote Machine

Now we consider a more complicated case, where all of our remote exponentials must be
computed on one remote machine. We assume the remote machine is pretending to be
helpful, but might be malicious. We want to limit the possible damage, by detecting if the
remote lies about some of its results, and possibly by concealing the base and/or exponent
we actually need.

9.3.2.1 Using Exponent Consistency Checks

We wish to compute WX (mod Y). We assume W and Y are not secret, and X is optionally
to be kept secret. We give an example with 16 generated problems; for 64-bit cryptographic
strength, the example can be generalized to use 128 generated exponents. We use the
Knapsack Problem to make it difficult for the remote to cheat undetected.

Select 16 exponents a, b, ..., Q.

abcd
efgH
ijkL
mNPQ

Lower case letters are first selected uniform randomly in [1, Y − 2]. Upper case letters are
then calculated to make various sums = 1 (mod Y −1). If X is not to be concealed, simply
set a = X . If X is to be concealed, choose 8 of the lower case letters at random and require
that they sum to X (mod Y − 1). (This makes the 8th letter a calculated value.) The
letters in each of the following patterns must add up to 1 (mod Y − 1).

abcd
efgH
....
.... determines H.

abcd
....
ijkL
.... determines L.

ab..
ef..
ij..
mN.. determines N.

a.c.

94

e.g.
i.k.
m.P. determines P.

Q is determined by requiring all sixteen letters to sum to 1 (mod Y − 1). Now we ran-
domly permute the sixteen values (but remember the permutation). The sixteen problems
W a, W b, ... are then shipped off to the remote in the permuted order, so the remote doesn’t
know which exponent is a, which is b, etc. The remote replies with sixteen answers. We
undo the permutation, and check the five products corresponding to the five patterns that
determine H, L, N, P, Q.

W a ∗W b ∗W c...WH = W a+b+c+...+H = W 1 (mod Y−1) = W (mod Y).

and so on for the other patterns. If all five checks are passed, we assume that the remote
hasn’t cheated. Depending on whether X = a, or X = sum of 8 values (mod Y − 1), we
either take W a as the value for WX , or multiply together the appropriate 8 powers of W .

For the remote to cheat, he must be able to modify some or all of the sixteen exponentials
W a, ... , while preserving the five product relationships. Since he doesn’t know which of the
exponents he receives is a, which is b, and so on, he must try to recover this information
by solving a Knapsack Problem: He must locate an eight-element subset of the sixteen
exponents that adds up to 1 (mod Y − 1). (He must actually locate 4 orthogonal subsets.)
In this small toy example, the Knapsack Problem isn’t very hard, and the remote could
solve it. But a 128-element version of the problem takes effort roughly 264 to solve, making
it a difficult problem. If the remote is able to solve the Knapsack Problem, this allows
him to fudge the values of the exponential he returns while still passing the verification
checkproducts. In the open X = a case, he could now fudge W a = WX arbitrarily. But in
the concealed X case, he doesn’t know which 8 values are multiplied to calculate WX . In
this case his best strategy is to still fudge some single value, say W a, and hope it’s included
in the product for WX .

We can strengthen this scheme by using a few small numbers as the sums that determine
the upper case letters (instead of making everything add up to 1 (mod Y − 1).) We might
use Fibonaccis, or powers of 2, or simply small random numbers. These will give easy-to-
compute small powers of W for the final checkproducts. But if the remote doesn’t know the
small numbers for the exponent sums, his knapsack problems are harder – he doen’t know
his target sums, only approximate values.

The total checking work for the 128-exponent case is substantial: There will be 8 checks,
each requiring 63 modular multiplies, and possibly a ninth long product to calculate WX .
This is 500 modular multiplies. If we are using 1024 bit exponents (and presumably W, X, Y
are all about this size), then a straight calculation of WX would only require about 1200
multiplications. So the savings isn’t dramatic. The suggestions below may reduce the
problem size and amount of checking work somewhat.

If we need to compute several exponentials at a time, we can embed all of them into
one grid of exponential problems. This amortizes the checking work.

Some areas for further research: Explore using small coefficients for the lower case
letters in the sums that make up the capital letters: The first constraint changes from

95

a + b + c + d + e + f + g + H = 1 (mod Y − 1) to 2a + 3b + c + d + 3e + f + 2g + H =
1 (mod Y − 1). This makes life even harder for the remote, since he doesn’t know the
coefficients, and he must examine a wider range of knapsack problems. We can also include
negative coefficients cheaply: We avoid the need for modular reciprocals by reading the
constraint as 2a+c+d+f +2g+H = 1+3b+3e (mod Y −1), and doing the multiplications
for both sides in the check. In the elliptic curve case, point negation, doubling, and halving
are very cheap operations. If we are using Koblitz curves, then the space of easily computed
coefficients expands enormously: any point can be multiplied by a power of τ = (−1+i

√
7)/2

simply by rotating the coordinates’ bit patterns. This expands the search space that the
remote must check enormously, and allows us to use smaller Knapsacks (fewer variables,
less work for the checkproducts) with an acceptable security level.

9.3.2.2 Using Base Consistency Checks

This scheme assumes that W is concealed but X is not. We must know one modular
exponential such as 2X (mod Y) ahead of time. It’s best if 2 is a primitive root of Y .
We choose 10 variables A, B, ..., J . We set A = W, B = 2, C = D = E = 1, and choose
F, G, H, I, J randomly in [1, Y − 1]. A Simple Random Fibonacci Step (SRFS) is: multiply
A by a randomly selected choice of B, ..., J . (This is a modular multiplication, mod Y .)
Then the variables are rotated one step, A ← B ← C ← ...I ← J ← A. After 100
SRF steps, the variables are suitably scrambled. We permute them randomly, and ask the
remote to calculate AX , BX , ..., JX (permuted). When the answers are returned, we undo
the permutation. We calculate the 10 reciprocals W−A, W−B, ..., W−J . (Use Montgomery’s
trick to only calculate one actual reciprocal.) Then we are prepared to undo our sequence of
Simple Random Fibonacci Steps, naturally in reverse order. Undoing steps requires using
the reciprocals to undo the modular multiplications. And we must also keep the reciprocals
updated with appropriate multiplications, so they are available when needed to undo further
steps. We need about 100 multiplications in the forward direction, and about 200 in the
reverse direction. At the end, if the remote has not cheated, we have WX in the A position,
2X in the B position, and 1X = 1 in the C, D, E positions. If the remote cheats randomly,
at least one of the C, D, E positions (probably all three) will be worng. If the remote cheats
by using a different X , then the 2X value in the B position will be wrong. For the remote to
cheat in a directed fashion, he must uncover the latent product relations in the set of bases
he is presented with. If we run the SRFS process with symbolic values (just keeping the
letters A...J to represent the initial values) and calculate the expressions after 100 steps,
the coefficients are roughly 25-bit numbers. The remote must somehow guess these values
to find the hidden relationships and make an undetectable change to the exponentials that
he is supposed to calculate. The coefficient growth rate can be increased in several ways,
reducing the number of SRF steps required to randomize the problem. We can use small
random coefficients in the Fibonacci process. We can do a more complex step: select 1/3
of the variables randomly, multiply them together perhaps with small powers, multiply the
product into another 1/3 of the variables selected at random. If we are using elliptic curves,
we have −1, 2, and ±1/2 available as cheap coefficients. If we are using Koblitz curves, we
also have powers of τ available. This is a very attractive option, since a lot of randomization
is introduced in every Random Fibonacci Step.

96

Some areas for further research: Try making the bases and exponents jointly vari-
able. If we are willing to use a sequential protocol for the exponentials, where we release
the problems one at a time and the remote must answer one problem at a time, we can get
an even harder-to-defeat system. The remote doesn’t know enough information to cheat
safely while he’s computing the early exponentials.

9.3.3 Checking a Generic Computation

Next we explore the idea of checking a generic computation made on a remote machine.
This is possible in theory, as outlined below. We have made some progress in the direction
of making it practical, but there’s still a long way to go.

Any mathematical proof can be formalized – converted into a (long) character string,
with pieces consisting of axioms, variable substitutions, deductions, etc. The rules for
verifying that each statement follows from the preceding statements can be boiled down to
verifying that various substrings are equal, or that one string is a substitution of another.
Such a proof can be mechanically checked by a computer program. The QED project was
a higher level version of this idea, trying to get a good piece of mathematics into machine
verified form, with the eventual goal that anyone offering a theorem would pre-check it in
the mechanical verifier. They had worked from the basic axioms of set theory up to verifying
the prime number theorem, but haven’t been heard from in a few years.

There’s not a lot of interest in proof checking, but a few people are working on it. Most
of the work is converting intuitive proofs into machine syntax, and expanding implicit things
that everyone knows, or “it’s obvious” into the intervening lemmas.

The idea of Probabilistically Checkable Proofs is to take an existing machine checkable
proof, at the level of “character 37625 equals character 74289” and expand it with error-
correcting codes, so that any error in the original proof is magnified enough to pervade the
entire proof. A good result is that if the original proof fails any check, the new proof will
likely show a problem from inspecting only three bits. I.e., a verifier that’s checking the
expanded proof can examine three bits of the proof, and if the proof is bad the verifier will
reject it with decent probability - maybe 25%. If the proof is good, the verifier typically will
say ok. The verifier can repeat with another test of three bits (presumably at least one of
them will be in a different place in the proof) and get another independent check. So a bad
proof will be detected with near certainty after examining a few hundred bits of the proof –
a bounded amount of inspected data, even though the original proof had no particular size
bound.

The catch is the amount of expansion: polynomial in the size of the original proof. This
makes it theoretically cute, but of no practical value.

We’ve been trying to beat on this idea to make it useful for our problem: our remote
machine would supply a proof that it had executed our program, by providing an execution
trace: each instruction in the program, A = B + C, or ADD %AH, 27, would produce a
line in the proof that the current values of B and C are xxx, or that location 27 contains
xxx, and register %AH contains xxx, and the appropriate list of bit values to prove the
addition. (Abit0 = Bbit0⊗ Cbit0, Carrybit0 = Bbit0 and Cbit0, &c). The remote machine

97

would produce the expanded proof and send it to us, and we’d inspect the necessary few
hundred bits to verify the correct execution. Somehow we deal with the impractical size of
the proof. And we somehow arrange to only transmit the bits we actually plan to inspect,
but without giving the remote machine a chance to fudge them. We have partially solved
these problems.

The remote machine must still calculate the polynomially expanded proof. [This alone
makes the scheme impractical.] However, instead of transmitting the proof for us to use,
he calculates a tree-hash of the proof (explained below), and sends us that tree-hash, along
with the size of the expanded proof. Our verifier decides which triples of bits it wishes to
inspect, and sends queries to the remote machine requesting the values of the particular
bits. The remote machine responds with the bit values, along with the hash-tree proofs
linking each bit into the master tree-hash value. If the verifier likes the triple of bits, and
the tree-hash proofs are ok, that bit triple is accepted. The verifier moves on to the next
check. After a hundred good checks, we’re done. The proof, and hence the computation,
is accepted. Of course this only verifies the computational aspect of the remote process. If
the remote machine is supposed to read a temperature input as part of the computation,
we have no way to check up on it.

(A tree-hash is a binary tree of data. Each leaf is hashed. Each parent node is the
hash of its two children’s hashes. The root hash is the value for the tree. To prove that
any particular value is in the tree at a particular spot, the prover provides the location,
value, and the hashes of all the brother-of-ancestor nodes along the path to the root. The
verifier checks that hashing the value, and then hashing that with each of the uncle nodes
along the path-to-root, produces the known full-tree hash value. The prover must keep
track of the whole tree and all the intermediate hashes, but it’s only a moderate amount
of work per leaf-change. This provides a way to distribute an authenticated phone book,
where the tree-hash is broadcast, and individual subscribers are provided with their list of
intermediate hashes for their path-to-root; they can prove their phone number to a third
party.)

We’ve made a little more progress to reduce the impracticality. As part of the proof of
execution, each memory reference (such as to location 27 above) must include an implicit
assertion that the contents of location 27 haven’t changed since the last store into 27, which
was at time-step 45623 of the proof. Checking that time-step 45623 stored the alleged value
into location 27 isn’t too hard, we just look back in the proof, but checking that nothing has
modified location 27 between then and now is hard: the direct approach requires examining
all intervening instructions to make sure thay didn’t modify location 27.

The new idea is that each instruction which references or modifies memory will be accom-
panied (in the execution proof) with a tree-hash of all of memory, with the tree expanded
to show, for example, location 27’s value before (and after, if there’s a modification), and
any updated value for the total memory tree-hash (if location 27 is changed). The amount
of checking required to verify the hashes is still pretty awful, but it’s now only proportional
to the tree depth, which is log(memory size).

The ultimate goal is to reduce the amount of proof-size expansion to not-much-worse-
than linear. Perhaps we could trade off additional checking work and a more complicated
checking protocol, to make a smaller proof. This is still an open problem.

98

References

[1] Mikhail J. Atallah, K. N. Pantazopoulos, John R. Rice, Eugene E. Spafford, “Secure
Outsourcing of Scientific Computations.” Advances in Computers, Vol. 54, pp. 215-
272. 2001.

[2] David Aucsmith, “Tamper Resistant Software: An Implementation.” Lecture Notes
in Computer Science. Vol. 1174. Springer-Verlag, Berlin. pp. 316-333. 1996.

[3] “Avalon Bus Specification: Reference Manual, ver. 2.3,” www.altera.com, July 2003.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, K. Yang,
“On the (Im)possibility of Obfuscating Programs”. In J. Kilian, editor, Advances in
Cryptology-CRYPTO ’01, Lecture Notes in Computer Science. Springer-Verlag, 2001,
August 2001.

[5] D. Baker, “Fortresses Build Upon Sand.”” Proceeding of the New Security Paradigms
Workshop, 1996.

[6] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi, “Cryptanalysis of a White Box
AES Implementation”, in Proceedings of Selected Areas in Cryptography 2004, pp.
251-264, 2004.

[7] Philip L. Campbell, “An Introduction to Software Obfuscation.” SAND2004-2198.
Printed June 2004.

[8] Philip L. Campbell, et. al, “Principles of Faithful Execution in the Implementation
of Trusted Objects,” SAND2003-2328, Sandia National Laboratories, Albuquerque,
NM, 2003.

[9] David Chaum and Hans van Antwerpen, “Undeniable Signatures”, Proceedings of
Crypto - Crypto ’89, LNCS 435, pp. 212-216, 1989.

[10] Stanley Chow, Phil Eisen, Harold Johnson, and Paul van Oorschot, “A white-box
cryptography and an AES implementation”, in Proceedings of SAC 2002 - 9th Annual
Workshop on Selected Areas in Cryptography, volume 2595 of LNCS, pages 250–270.
Springer, 2002.

[11] Stanley Chow, Phil Eisen, Harold Johnson, and Paul van Oorschot “A white-box
DES implementation for DRM applications.” in Proceedings of DRM 2002 - 2nd
ACM Workshop on Digital Rights Management, 2002.

[12] Christian Collberg, Clark Thomborson, Douglas Low, “A Taxonomy of Obfuscating
Transformations.” Technical Report 148, Department of Computer Science, University
of Auckland. 1997.

[13] http://www.dvdcca.org/css.

99

[14] Joan Daemen and Vincent Rijmen, “The Design of Rijndael: AES - The Advanced
Encryption Standard”, Springer, 2002.

[15] Phil Eisen and Paul C. van Oorschot, “Dynamic-key white-box cryptography”,
preprint, 2003.

[16] Joan Feigenbaum, “Encrypting Problem Instnaces Or..., Can you Take Advantage of
Someone Without Having to Trust Him?.” Proceedings of Crypto – ’84, LNCS 218,
pp. 477-488, 1986.

[17] “Data encryption standard”, Number 46-2 in Federal Information Processing Stan-
dards Publications. U.S. Department of Commerce/National Bureau of Standards,
National Technical Information Service, Springfield, Virginia, 1993.

[18] Flask Home Page: http://www.cs.utah.edu/flux/fluke/html/flask.html.

[19] O. Goldreich, S. Goldwasser, S. Micali, “How To Construct Random Functions”. J.
of the ACM, Vol. 33, 792-807, 1986.

[20] Robert S. Gray, David Kotz, George Cybenko, Daniela Rus, “D’Agents: Security in
a Multiple-Language, Mobile-Agent System.” Mobile Agents and Security. G. Vigna,
editor. Lecture Notes in Computer Science, Volume 1419, pp. 154-87, 1998.

[21] S. Hada, “Zero-knowledge and Code Obfuscation”. Advances in Cryptology-
ASIACRYPT ’00, Lecture Notes in Computer Science. Springer-Verlag, 443-457, 2000.

[22] Fritz Hohl, “Time Limited Blackbox Security: Protecting Mobile Agents from Mali-
cious Hosts.” Mobile Agents and Security. G. Vigna, editor. Lecture Notes in Com-
puter Science, Volume 1419, pp. 92-114, 1998.

[23] Matthias Jacob, Dan Boneh, and Edward Felten, “Attacking an obfuscated cipher by
injecting faults”, in ACM CCS-9 Workshop DRM, 2002.

[24] Cees J. A. Jansen, “Investigations on Nonlinear Stream Cipher Systems: Construction
and Evaluation Methods,” Philips usfa B.V., the Netherlands, 1989.

[25] Hugo Krawczyk and Tal Rabin, “Chameleon Hashing and Signatures”, in Proceedings
of NDSS 2000, pp. 143-154, 2000.

[26] Lindholm and Yellin, ”The JavaTM Virtual Machine Specification, Second Edition,”
java.sun.com.

[27] Linux Security Modules homepage. http://lsm.immunix.org/lsm modules.html.

[28] Peter Loscocco, Stephen Smalley, “Meeting Critical Security Objectives with Security-
enhanced Linux.” http:// www.nsa.gov/selinux.

[29] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor, S.
Jeff Turner, John F. Farrell, “The Inevitability of Failure: The Flawed Assumption
of Security in Modern Computing Environments.” Proceedings of the 21st National
Information Systems Security Conference, pages 303-314, October 1998.

[30] Sergio Loureiro, “Mobile Code Protection.” Ecole Nationale Superieure des Telecom-
munications. Paris, France. January 26, 2001.

[31] B. Lynn, M. Prabhakaran, A. Sahai, “Positive Results and Techniques for Obfusca-
tion”. In C. Cachin, J. Camenisch, editors, Advances in Cryptology-EUROCRYPT
’04, Lecture Notes in Computer Science. Springer-Verlag, 2004, May 2004.

[32] Bruce J. MacLennan, Functional Programming: Practice and Theory. Addison-
Wesley, New York. 1990.

100

[33] Spencer E. Minear, “Providing Policy Control Over Object Operations in a
Mach Based System.” Proceedings of the Fifth USENIX Unix Security Sym-
posium. June 5-7, 1995. Salt Lake City, UT. pp. 141-55. (see also http://
www.securecomputing.com/randt/HTML/technical-docs.html)

[34] Sau-Koon Ng, “Protecting Mobile Agents Against Malicious Hosts,” Masters Thesis.
Division of Information Engineering. The Chinese University of Hong Kong. June
2000.

[35] “NIOS 3.0 CPU Data Sheet, ver. 2.1,” www.altera.com, March 2003.

[36] Mark K. Reiter, Aviel D. Rubin, “Crowds: Anonmymity for Web Transactions.” ACM
Transactions on Information and System Security, June 1999.

[37] James Riordan, Bruce Schneier, “Environmental Key Generation Towards Clueless
Agents,” Mobile Agents and Security. G. Vigna, editor. Lecture Notes in Computer
Science, Volume 1419, pp. 15-24, 1998.

[38] Ronald L. Rivest, “Chaffing and Winnowing: Confidentiality with-
out Encryption.” MIT Lab for Computer Science. March 18, 1998.
(http://theory.lcs.mit.edu/ rivest/chaffing.txt).

[39] Ronald L. Rivest, Leonard Adleman, and M. Dertouzos, “On data banks and privacy
homomorphisms.” In Demilllo, Dobkin, Jones, and Lipton, editors, Foundations of
Secure Computation, pp. 169-80. New York: Academic Press, 1978.

[40] Tomas Sander, Christian F. Tschudin, “Towards Mobile Cryptography.” 1998 IEEE
Symposium on Security and Privacy. pp. 215-24, May 3-6, 1998.

[41] Tomas Sander, Christian F. Tschudin, “On software protection via function hiding.”
Lecture Notes in Computer Science, V1525, p.111-123, 1998.

[42] Tomas Sander, Christian F. Tschudin, “Protecting Mobile Agents Against Malicious
Hosts”, Mobile Agents and Security, LNCS 1419, p. 44-60, 1998.

[43] Security-Enhanced Linux Project Page: http://www.nsa.gov/selinux/.

[44] Adi Shamir, “On the security of DES”, in Hugh C. Williams, editor, CRYPTO, volume
218 of LNCS, pages 280–281. Springer, 1985.

[45] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen, Jay
Lepreau, “The Flask Security Architecture: System Support for Diverse Security
Policies.” Proceedings of The Eighth USENIX Security Symposium, pages 123-139,
August 1999.

[46] Thomas D. Tarman, et. al. , “On the Use of Trusted Objects to Enforce Isolation Be-
tween Processes and Data,” in Proceedings, 2002 International Carnahan Conference
on Security Technology, IEEE, Piscataway, NJ, pp.115-119, 2002.

[47] N. Varnovsky, V. Zakharov, “On the Possibility of Provably Secure Obfuscating Pro-
grams”. In M. Broy, A. Zamulin, editors, Perspectives of Systems Informatics, 5th
International Andrei Ershov Memorial Conference, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2003, July 2003.

[48] Giovanni Vigna, “Protecting Mobile Agents Through Tracing.” 3rd ECOOP Work-
shop on Mobile Object Systems, Jyvälskylä, Finland, June 1997.

[49] Chenxi Wang, “A Security Architecture for Survivability Mechanisms,” Ph.D. Disser-
tation, University of Virginia, Department of Computer Science, October 2000.

101

[50] Robert N. M. Watson, “TrustedBSD: Adding Trusted Operating System Features to
FreeBSD”.

[51] Gregory Wroblewski, “General Method of Program Code Obfuscation.” (draft) Ph.D
Dissertation. Wroclaw 2002.

[52] A. C. Yao, “Protocols for secure computations.” IEEE Symposium on Foundations of
Computer Science 82, pp. 160-4, Chicago, Illinois, 1982.

102

DISTRIBUTION:

2 MS 0785
W. Anderson, 5514

3 MS 0785
C. Beaver, 5514

2 MS 0785
W. Neumann, 5514

2 MS 0785
R. Schroeppel, 5514

2 MS 0785
P. Campbell, 5516

2 MS 0455
H. Link, 5517

2 MS 0806
L. Pierson, 9336

1 MS 0785
T. McDonald, 5514

1 MS 0785
R. Hutchinson, 5516

1 MS 0455
R. Tamashiro, 5517

1 MS 0806
L. Stans, 9336

1 MS 0785
R. E. Trellue, 5501

1 MS 0451
S. G. Varnado, 5500

1 MS 9018
Central Technical Files,
8945-1

2 MS 0899
Technical Library, 9616

2 MS 0612
Review & Approval Desk,
9612 For DOE/OSTI

1 MS 0123
LDRD Program Office,
Attn: Donna Chavez

103

	Securing Mobile Code
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1: Introduction: What is "secure mobile code?"
	Chapter 2: Specialized Software Solutions
	2.1 Java
	2.2 D'Agents
	2.3 Flask

	Chapter 3: Specialized Hardware Solutions
	3.1 FPGA Implementation
	3.2 Software Shrink Wrap Process
	3.3 Future Specialized Hardware Work

	Chapter 4: Software Solutions Requiring neither Specialized Software nor Hardware: Obfuscation Techniques
	4.1 Collberg's Taxonomy
	4.2 Sander & Tschudin
	4.3 Wroblewski
	4.4 Wang
	4.5 Hohl
	4.6 Ng

	Chapter 5: White-Box Obfuscation
	5.1 Overview of White-Box DES
	5.2 An Introduction To White-Boxing Techniques
	5.2.1 White-Box Encoding Terminology
	5.2.2 White-Box Encoding Techniques
	5.2.2.1 Partial Evaluation
	5.2.2.2 Mixing Bijections
	5.2.2.3 I/O-Block Encoding
	5.2.2.4 Combined Function Encoding
	5.2.2.5 Bypass Encoding
	5.2.2.6 Split Path Encoding
	5.2.2.7 Wide-Input Encoded ATs

	5.2.3 Bijective Endoing and Local Security

	5.3 White-Boxing Example: DES
	5.3.1 Unobfuscated DES
	5.3.2 White-Box DES
	5.3.2.1 White-Box DES-The T-Boxes
	5.3.2.2 White-Box DES-The M1 Block
	5.3.2.3 White Box DES-The M2 Blocks
	5.3.2.4 White-Box DES-The M3 Block

	5.4 Attacks on Chow's White-Box DES
	5.4.1 Attack on Split T-Box Output
	5.4.2 Differential Fault Injection Attack

	5.5 Implentation Improvements
	5.5.1 Statistical Bucketing Attack Resistance
	5.5.2 Differential Fault Injection Attack Resistance
	5.5.3 Optimizing Construction

	5.6 Extensions of These Techniques
	5.6.1 Application to triple-DES
	5.6.2 White-Box Encoded AES

	5.7 Future White-Boxing Work

	Chapter 6: Cryptographic Approaches to Securing Mobile Code
	6.1 Computing with Encrypted Data
	6.2 Computing with Encrypted Functions
	6.2.1 Function Compositon
	6.2.2 Encrypting Functions via Homomorphic Encryption

	6.3 Digital Signatures
	6.3.1 Undetachable Digital Signatures
	6.3.2 Verifiably Linked Signatures

	Chapter 7: Impossibility vs. Possibility Results for Circuit Objuscatioin
	7.1 Preliminaries
	7.2 Obfuscators

	Chapter 8: Future Obfuscation Work
	Chapter 9: Verifying Remote Execution
	9.1 GIMPS
	9.2 Distributed Search, with Opponents
	9.3 Modular Exponential
	9.3.1 Exponentiation with Multiple Remote Machines
	9.3.2 Exponentatoin with Just One Remote Machine
	9.3.2.1 Using Exponent Consistency Checks
	9.3.2.2 Using Base Consistency Checks

	9.3.3 Checking a Generic Computation

	References
	Distribution List

