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Constitutive modeling of Radiation effects on the 

Permanent Set in a silicone elastomer

A. Maiti,† R. H. Gee, T. Weisgraber, S. Chinn, and R. S. Maxwell

Abstract

When a networked polymeric composite under high stress is subjected to irradiation, 

the resulting chemical changes like chain scissioning and cross-link formation can lead to 

permanent set and altered elastic modulus. Using a commercial silicone elastomer as a 

specific example we show that a simple 2-stage Tobolsky model in conjunction with 

Fricker’s stress-transfer function can quantitatively reproduce all experimental data as a 

function of radiation dosage and the static strain at which radiation is turned on, including 

permanent set, stress-strain response, and net cross-linking density.  
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Filled elastomeric rubber materials are versatile components in numerous applications 

ranging from cushion, coating, adhesives, seismic isolation, thermal and electrical 

barriers and interconnects [1-3]. Such materials over long times can undergo chemical 

aging, which can alter and degrade many of its useful properties important to the 

application in question. Chemical aging signatures most profoundly affecting the elastic 

properties of the polymer include [4, 5]: (1) creation of new crosslinks; (2) breaking 

(scission) of covalent bonds; and (3) modification of the polymer-filler interface due to 

changes in cross-linking to the filler, as well as physico-chemical changes, e.g., involving 

removal of water, and so on. In applications, e.g., cushions, where the polymeric material 

is subjected to finite stress conditions for a long period of time, such chemical 

modifications can lead to a modified state of ease (i.e., a state corresponding to zero 

stress) known as permanent set. 

Given the slow nature of the above processes one often designs artificial aging 

experiments in which the polymeric material is subjected to harsher, but controlled 

environments than it experiences in reality. A relevant experiment in this regard is a 

recent one performed by Chinn et al. [6], in which a commercial, filled siloxane 

composite, DC-745 was subjected to states of finite tensile strain (λ1) and exposed to 

controlled dosages (D) of γ-radiation from a Co-60 source. Following the irradiation,

tensile tests were performed to measure the amount of permanent set and stress-strain 

response for each value of D and λ1. In addition, NMR and swelling experiments were 

performed to measure the radiation-induced changes to the net cross-link density. These 

experiments revealed that: (1) exposure to ionizing γ-radiation primarily leads to radiative 
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cross-linking reactions; and (2) the net increase in cross-linking density is proportional to 

the radiation dosage D, but nearly independent of the strain state λ1 at which the radiation 

is applied.

More than six decades ago, a simple, yet effective model for describing permanent set 

under conditions described above was given by Tobolsky and his collaborators [7, 8]. 

This model, an independent network hypothesis, surmises that the additional crosslinks

introduced at strain λ =λ1 can be treated as an additional independent network, whose 

state of ease is at strain λ1. Mathematically this can be expressed by writing the total 

stress of the system as a sum of stress due to the original network and that due to the new 

network, as follows:

)',(),( 10 λνσλνσσ +=total , (1)

where λ denotes the system strain (the original zero stress corresponding to λ = 1), 

λ´=λ/λ1, ν0 is the cross-linking density of the original network, and ν1 the new cross-

linking density introduced (e.g., by radiation) at λ = λ1. The function “σ” is the stress 

response function of the pristine material, for which one could potentially use one of 

several forms available in rubber elasticity theory [9], e.g., Neohookean, Mooney-Rivlin, 

Valanis-Lendel, Ogden, or more modern variants [10]. The efficacy of the Tobolsky 

model (eq. (1)) has been tested extensively in the literature, see, e.g., ref. [11-13].

Unfortunately, when eq. (1) in conjunction with a simple Neohookean materials 

model was used to interpret the permanent set data of ref. [6], the increase in cross-

linking density was found to be very different from that measured in NMR and swelling 
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experiments, especially at higher radiation dosage. This failure of the Tobolsky model 

was attributed to the creation of elastically ineffective chains through the formation of 

crosslinks that close off loops [6].

In this Letter, we re-investigate the above problem by using a more generalized 

Tobolsky model that incorporates a subtle feedback effect of the new network on the 

original network when new crosslink creation is also accompanied with scissioning of 

some of the original crosslinks [14]. Mathematically this is expressed in terms of a stress 

transfer function ψtransfer, which is the fraction of the new crosslinks that effectively 

become part of the original network through the feedback mechanism [15]. Thus, in the 

generalized Tobolsky model one replaces the crosslink densities ν0 and ν1 of eq. (1) by 

effective quantities: 

)',(),( ,1,0 λνσλνσσ effefftotal += , (1´)

where,

10,0 νψννν transferscieff +−= ; and 11,1 νψνν transfereff −= . (2)

In eq. (2) νsci is the density of original cross-links that undergo scissioning at strain λ1. In 

the following we express chain scissioning and new crosslink formation as fractions of 

the original crosslink density, i.e., 0νξν scisci = and 01 νξν xc= , which allows re-

expressing eq. (2) as:

)1(0,0 xctransferscieff ξψξνν +−= ; and xctransfereff ξψνν )1(0,1 −= . (2´)
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As for ψtransfer we use a simple formula developed by Fricker [16] for a system of 

phantom chains:

xc

sci
transfer ξ

ξ
ψ

+
=

1
, (3)

which, by its very construction implies non-zero feedback only in the presence of chain 

scission, and has the following simple property:

effxceff ,0,1 νξν = . (3´)

Accuracy of the Fricker’s formula (eq. (3)) for elastomeric systems undergoing 

simultaneous chain scission and crosslinking has been verified through explicit molecular 

dynamics simulations on bead-spring models [14].

In order to compute permanent set and stress-strain response, one needs: (i) a 

materials model for the function “σ” of eq. (1´), and (ii) a model for ξsci and ξxc as a 

function of the radiation dosage D. For simplicity, we chose the first-order Mooney-

Rivlin materials model [9]: 

)(),( λνλνσ TfkB= ,  where )1/()/1)(/1()( 2 βλλλβλ +−+=f (4)

In eq. (4), σ represents the “true” stress, kB is the Boltzmann constant, and β is the ratio of 

the Mooney-Rivlin constants ( 1001 / CC=β in the standard notation of rubber elasticity 

literature [9]), which typically is in the range 0.3-1.0 for most elastomeric rubber 

materials. The product νkBT physically represents the shear modulus of the material 
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under zero strain. For the radiation model, we assume a simple linear dependence of 

chain scission and crosslinking on dosage D (within limits of ξsci < 1):

Dk scisci =ξ , and Dkxcxc =ξ . (5)

In the rest of the paper we explore whether the simple theoretical model embodied in 

equations (1´)-(5) can be used to explain the permanent set and elastic response data of 

ref. [6] by exploiting just four fitting variables: ν0, β, ksci, and kxc. 

In Fig. 1 we compare the experimental recovered length and permanent set for 

different values of D and λ1 with computed values. To compute the recovered length λs, 

we numerically solve eq. (1´) for σtotal = 0. The permanent set Ps is simply defined by the 

ratio (λs-1)/(λ1-1). Note that when eqs. (3´) and (4) are substituted into eq. (1´), ν0,eff

becomes a multiplicative constant, thereby yielding the following simple equation for λs:

0)/()( 1 =+ λλξλ sxcs ff , (6)

which is independent of bothν0 and (more interestingly) the amount of chain scissioning 

ξsci [17]. Thus, in order to compute λs, we only need values for parameters β and kxc, for 

which we made the following choices: β = 0.3, and kxc = 0.010 (kGray)-1
. As Fig. 1 

indicates, the agreement between theory and experiment is excellent for all values, except 

a slight overestimation of the computed value at D = 70 kGray and λ1 = 1.9. 

To fit the other two parameters, i.e., the initial crosslink density ν0 and the amount of 

radiation-induced chain scission governed by ksci, we needed experimental data on stress-

strain response, which was available for the specific radiation dose D = 170 kGray (see 
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Fig. 5 of ref. [6]). The crosslink density ν0 could be readily obtained from the elastic 

response of the pristine material (i.e. not exposed to radiation), which yields ν0kBT = 

135.4 psi. As for the chain scission parameter we chose ksci= 0.002 (kGray)-1, which 

provided an excellent fit to the low-strain (λ < 20%) experimental data for all values of 

λ1, as shown in Fig. 2. In particular, the observed stiffening of the material under 

irradiation through an increased elastic modulus is accurately reproduced in our model. It 

is to be noted, however, that the experimental stress-strain response for higher strains 

clearly deviate from the computed values. This stems from the well-known limitations of

the simple first-order Mooney-Rivlin model employed here, and could be improved by 

using a more sophisticated materials model from the literature [9, 10]. 

Finally, we computed the net cross-link density scixc ννν −+0 )1(0 scixc ξξν −+= as a 

function of radiation dosage and compared with NMR and swelling data of ref. [6]. Fig. 3 

displays such a comparison. We have also included values previously predicted from the 

measured permanent set data using a Neohookean materials model (see Fig. 11 of ref. 

[6]). Our computed cross-link density is in excellent agreement with the NMR and 

swelling data, clearly showing that the generalized Tobolsky model achieves remarkable 

consistency among all data, i.e., permanent set, stress-strain response, as well as 

measured cross-link density as a function of radiation dosage.

In summary, with the commercial elastomer DC-745 as a concrete example, we have 

demonstrated the usefulness of a generalized 2-stage Tobolsky model in conjunction with

the Fricker’s stress transfer function in interpreting radiation-induced chemical aging as 

manifested in permanent set and changes in stress-strain response. Even a simple 



8

materials model like first-order Mooney-Rivlin with very few parameters is able to 

quantitatively reproduce uniaxial tensile data over a wide range of experimental 

conditions, firmly establishing the strong predictive power of such an approach. Our

model predicts that permanent set is independent of the amount of chain scission, while 

elastic response depends on both chain scission and new crosslinks created by the 

irradiation. Currently we are performing similar measurements on a number of 

elastomeric and foam systems, and adopting a finite-elements approach [18] in order to 

simulate more realistic geometries, stress patterns, and the effect of filler distribution 

morphology as well as the nature of the filler-polymer interface.

bledsoe2
Text Box
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Figure captions:

Fig. 1. Experimental (from ref. [6]) and computed recovered length (λs) and permanent 

set Ps (=( λs-1)/( λ1-1)) for various values of λ1 and radiation dosage D. (Top left) 

Experimental λs; (top right) computed λs; (bottom left) experimental Ps; (bottom 

right) computed Ps. Parameters used: β = 0.3, kxc = 0.010 (kGray)-1.

Fig. 2. Stress-strain response data at a radiation dosage of D = 170 kGray. Response of 

the pristine material is included as well. (Left) Experimental (from ref. [6]) data; 

(Right) computed values. Parameters used: β = 0.3, kxc = 0.010 (kGray)-1; ksci = 

0.002 (kGray)-1; ν0kBT=135.4 psi. In both plots the y-axis represents the 

engineering stress, i.e., σe=σ/λ, and all curves are shifted along the negative x-

axis by εs=λs-1 (so that they start from the origin).

Fig. 3. Net crosslink density (expressed as a fraction of the initial crosslink density ν0) as 

a function of radiation dosage.
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Figure 3




