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We investigate the characteristics and noise performance of rf Superconducting Quantum 

Interference Devices (SQUIDs) by solving the corresponding Langevin equations numerically 

and optimizing the model parameters with respect to noise energy.  After introducing the 

basic concepts of the numerical simulations, we give a detailed discussion of the performance 

of the SQUID as a function of all relevant parameters.  The best performance is obtained in 

the crossover region between the dispersive and dissipative regimes, characterized by an 

inductance parameter Lβ ′  ≡ 2π LI0/Φ0 ≈ 1; L is the loop inductance, I0 the critical current of 

the Josephson junction, and Φ0 the flux quantum.  In this regime, which is not well explored 

by previous analytical approaches, the lowest (intrinsic) values of noise energy are a factor of 

about 2 above previous estimates based on analytical approaches. However, several other 

analytical predictions, such as the inverse proportionality of the noise energy on the tank 
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circuit quality factor and the square of the coupling coefficient between the tank circuit and 

the SQUID loop, could not be well reproduced.  The optimized intrinsic noise energy of  the rf 

SQUID is superior to that of the dc SQUID at all temperatures. Although for technologically 

achievable parameters this advantage shrinks, particularly at low thermal fluctuation levels, 

we give an example for realistic parameters that leads to a noise energy comparable to that of 

the dc SQUID even in this regime. 
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1. INTRODUCTION 

 

For more than 30 years, rf Superconducting Quantum Interference Devices (SQUIDs) have 

served as reliable and sensitive detectors of magnetic flux.  Given the voluminous literature 

on the subject, one might have expected that all important features of this device had been 

treated in detail.  Although this is certainly true for many aspects, it appears, however, that 

detailed numerical simulations solving the underlying dynamic Langevin equations have not 

yet been performed.  In contrast, such simulations have been standard for the analysis of dc 

SQUIDs since the mid 1970's 1,2,3.  Early theoretical (and also experimental) investigations of 

the noise performance of rf SQUIDs focused on the so-called dissipative regime in which the 

total magnetic flux Φ enclosed in the SQUID loop is a multivalued function of the applied 

flux.  In this regime, which is characterized by an inductance parameter 1/2 00 >>>>≡≡≡≡′′′′ ΦπLIβL  

(where L is the inductance of the SQUID ring, I0 is the junction critical current, and Φ0 ≡ h/2e 

is the flux quantum), the rf drive causes the SQUID to switch between quantum states and to 

dissipate energy at a rate that is periodic in Φext. Between 1972 and 1975, Kurkijärvi 4,5, 

Kurkijärvi and Webb 6 and Jackel and Buhrman 7 developed a theory for the flux noise of the 

rf SQUID that was based on the use of suitable probability functions describing the quantum 

transition of the SQUID.  The analyses included the effect of fluctuations in the SQUID loop, 

the tank circuit and the preamplifier; the last often limits the performance of rf SQUIDs 

cooled to liquid helium temperatures.  A detailed analysis and optimization of all forward and 

reverse interactions between the rf SQUID input and its output were given by Ehnholm8 in 

1977. Thorough comparisons between theory and experiment were performed by Giffard and 

Hollenhorst 9,10. 

In the mid 1970's the dispersive regime (characterized by 1<′Lβ ), where Φ vs. Φext is a 

single-valued function, was addressed by Hansma 11,12, who calculated the SQUID 
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characteristics at zero temperature in the limit 1<<′Lβ .  This approximation was later 

extended to 1≤′Lβ  by Rifkin et al. 13 and by Sorensen 14. In the limit 1<<′Lβ  the effects of 

small thermal fluctuations were addressed by Likharev and Ulrich 15 and by Danilov and 

Likharev 16.  The noise performance of both low- and high-inductance interferometers was 

studied intensively by Danilov, Likharev and Snigirev 17.  While the work mentioned above 

treated thermal noise as a small perturbation, in 1998 Chesca addressed the case of large 

fluctuations in the extreme dispersive regime 1<<′Lβ  by analytically solving the non-

stationary Smoluchovski equation describing the noise performance of the rf SQUID 18. In the 

limit of very large fluctuations Chesca also gave analytical solutions for the case 3≤′Lβ .  The 

optimal noise energy can be as low as 17 cLBdLT fβTkfβQTαTε ′′′′⋅⋅⋅⋅′′′′++++⋅⋅⋅⋅≈≈≈≈ /]/1[47.0 2  at low 

temperatures ( )1L <<<<<<<<′′′′βΓ ), increasing as )exp( LβΓ ′′′′  when fluctuations become large 18.  Here, 

00 / Φ= RIf c  is the junction characteristic frequency, R is the junction resistance and 

00/2 ΦITπkΓ B====  is the noise parameter. The temperatures T and TT refer to the SQUID and 

tank circuit, respectively, and TLLM /=α  is the coupling parameter between the SQUID 

and the tank circuit inductance LT; M is the mutual inductance.  Finally, Q is the quality factor 

of the tank circuit, and fd is the drive frequency.  Chesca 18 further pointed out that the factor 

12 )( −′ dL fQβα  is usually much larger than unity and thus dominates ε.  In addition, the noise 

energy in the dissipative regime is worse than in the dispersive regime by a factor of 

1/ >>dc ff ; thus, the dispersive regime seems by far superior 18.  

These analytical approaches for dispersive rf SQUIDs assume that the tank circuit 

oscillations are quasi-sinusoidal; this is likely to be valid for weak coupling (α << 1) and 

small values of Lβ ′ (<< 1).  On the other hand, the transition regime between the dispersive and 

the dissipative mode, in particular, is not well explored.  Here, it appears that numerical 

simulations are required, and are the subject of this paper.  We shall see that indeed very low 
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values of ε can be obtained near Lβ ′  = 1, remaining low for values of Γ as high as unity.  To 

obtain very low values of  ε  the coupling coefficient α is required to be well above 0.2. 

The remainder of this paper is organized as follows.  Chapter 2 addresses the model and 

explains numerical details.  In Chapter 3, we choose sample parameters and discuss current-

voltage characteristics and the transfer function, and, in Chapter 4, we use these results to 

calculate the voltage and noise energy.  In Chapter 5 we discuss the optimized circuit by 

varying a large number of parameters to minimize the noise energy.  Chapter 6 contains our 

conclusions.  Appendix A contains a list of symbols used in the paper. We address the noise 

temperature of rf SQUIDs used as amplifiers in the following paper19. 

 

 

2. MODEL AND NUMERICAL DETAILS 

 

To model the rf SQUID and its readout we consider the circuit shown in Fig. 1. The rf 

SQUID consists of a superconducting loop with inductance L coupled to a tank circuit via a 

mutual inductance M. The Josephson junction incorporated into the SQUID loop is described 

via the resistively and capacitively shunted junction (RCSJ) model 20,21 by a Josephson current 

with maximum amplitude I0 in parallel with a resistor R and a capacitor C.  The tank circuit 

consists of an inductor LT, a capacitor CT and a resistor RT and is biased with an oscillating 

current  tωII ddT cos= .  The current flowing through LT is denoted by I1, and that through 

the right arm by I2.  Counterclockwise currents give positive flux.  The thermal noise currents 

arising from the resistors R and RT are modelled by two independent current sources IN and 

IN,T connected in parallel with R and RT, respectively, each with a white spectral density.  We 

allow R and RT to have different temperatures so that the spectral densities of the current noise 

produced by R and RT are 4kBT/R and 4kBTT/RT, respectively. 
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We first derive the differential equations describing the circuit of Fig. 1 in dimensioned  

units.  The Josephson junction is described by 

 

 JIC
R

I N =+++ δ
π

Φδ
π

Φδ &&&
22

sin 00
0 .    (1) 

 

Here, δ is the gauge invariant phase difference between the superconducting order parameters 

on either side of the barrier and  J is the current circulating in the SQUID loop.  Dots denote 

time derivatives. 

The total flux Φ through the SQUID loop is connected to the gauge invariant phase 

difference δ via 0/2 ΦπΦδ −−−−==== , yielding 1ext MILJΦΦ ++++++++==== .  Here, Φext is the external 

(static) flux. For the tank circuit the voltages ULT, URT and UCT across LT, RT, and CT,  

respectively, are related by RTCTLT UUU += .  One way to proceed would be to replace the 

time derivatives of these voltages by the currents through the corresponding elements, for 

example, yielding a second order differential equation in I1.  In this formulation, however, the 

first time derivative of the current through RT appears, making the numerical treatment of 

noise inconvenient. It is thus better to use the flux ΦT through LT as a variable. With  

TT ΦMJIL =+1 , TLT ΦU &= , 21 IIIT += , NTTRTTNTRTCTT IRURUUUCI +=+== //)(2
& , 

where UNT and INT denote the noise voltage across and noise current through the resistor RT, 

we find 

 

CTTT UCII &+= 1  .       (2)  

 

Here, tII ddT ωcos= , TextLTTT LLMJI )1/()]2/([/][ 2
01 αΦπδΦαγΦΦ −++=−=  and 

LJ LText )1/(]/2/[ 2
0 αγΦαΦπδΦ −−−−= .  We defined the parameter LLTL /=γ  which, 
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as we see below, acts as a scaling parameter for voltages, currents and fluxes in the tank 

circuit.  Further, from the current I2 through the right arm of the tank circuit, we have 

 

)(
1

)(
1

NTCTT
TT

NTRT
TT

CT UU
CR

UU
CR

U +−=+= Φ&&  .                           (3)   

 

Equations (1) to (3) form a system of coupled differential equations for the variables δ, 

ΦT and UCT that we can use to calculate the dynamics of the rf SQUID.  Before doing so, 

however, we convert the relevant equations into a dimensionless notation. We normalize 

currents i in units of I0, fluxes ϕ  in the SQUID loop in units of Φ0, fluxes ϕT  in the tank 

circuit in units of Φ0/2π, voltages u in units of I0R and time τ in units of RI00 2/ πΦ .  We 

further define the Stewart-McCumber parameter 0
2

0 /2 Φπβ CRIc =  and the reduced 

inductance 00
' /2 Φπβ LIL = .  With these parameters for the rf SQUID loop, we find 

  ′
++
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−==+++
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T
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1

1

1
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2
&&&  .   (4) 

 

For the tank circuit, with 0/2 ΦΦπϕ TT = , we obtain  

 

 cT
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and 

 )(00 NTcTTcT uuQfu +−= ϕ&&  .     (6) 

 



 8 

Here, TTT RCLQ //0 =  denotes the (unloaded) quality factor and TT CLRIf 000 2/ πΦ=  

the (unloaded) resonance frequency in units of the junction characteristic frequency 

00 /ΦRIf c = .  It is convenient to define the resistance ratio γR=RT/R which can be expressed 

as 0
2

0 / Qf LLR γβγ ′= .  

We next give explicit expressions for the noise currents and voltages.  The functions iN,0 

and iNT,0 consist of a sequence of Gaussian distributed random numbers with zero average and 

a mean square deviation of unity.  The random numbers change after a time interval τnoise well 

below any response time of the system (typically we take τnoise = 0.5).  We express the noise 

current through the junction resistor as 0,/2 NnoiseN ii ⋅= τΓ .  Similarly, for the noise voltage 

uNT across RT we obtain 

0,0
2

00, /2/)/(2 NTnoiseTLLNTRnoiseTRNTRNT iQfiiu ⋅⋅′=⋅⋅=⋅= τΓγβγτΓγγ ,  

with 00/2 ΦπΓ ITk TBT = .  

The above differential equations (4) – (6) depend on the three variables δ, uc and ϕT and on 

the 11 parameters γL, '
Lβ , cβ , α, Q0,  f0 , Γ, ΓT, fd, id and ϕext.  An important quantity obtained 

directly from these equations is the voltage across the tank circuit, which can be expressed as 

TLTT uu ϕ&==   From uT  we obtain a normalized "static voltage" vT across the tank circuit as 

follows. First, after we have changed some parameters of the calculation, we allow the system 

to relax for about 1000 periods of ac drive. After this relaxation step a time trace of uT  is 

taken over typically 100 - 1000 periods of the rf drive. This time trace is subsequently Fourier 

transformed and the Fourier channel corresponding to the drive frequency fd is used as the "dc 

voltage" vT. Note that for a time trace of 100 - 1000 periods of the rf drive one channel of the 

Fourier transform corresponds to a frequency interval ∆f between 10-2 and 10-3 fd . Using this 

channel as the output assumes that we have a detector to measure the amplitude of uT  at the 

drive frequency in the (narrow) bandwidth ∆f.  The voltage vT serves as the low-frequency 
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voltage output, to be plotted as a function of bias current, applied flux etc. In order to 

calculate low frequency fluctuations a series of 2N values of vT (typically N = 1024) is used to 

constitute a time trace vT(τ), to be Fourier transformed to obtain the voltage noise power svT 

(in units of I0RΦ0/2π), the flux noise 2)//( extTvT ddvss ϕϕ =  and the normalized noise energy 

Lse βΓπ ϕ ′= 2/ .  This definition ensures that the units of e, RITkB 00 /2Φ , are the same as that 

used for dc SQUIDs 22, allowing a direct comparison of the two devices.   

A major task is to find the parameters that minimize e.  One faces a high dimensional 

optimization problem that perhaps has been the main obstacle to addressing the rf SQUID 

numerically long ago.  Fortunately, at least one of the parameters, γL, appears as a simple 

scaling parameter.  It turns out that voltages, fluxes and currents across the tank circuit can be 

obtained from the case γL =1 by dividing voltages and fluxes by γL and multiplying the 

currents with γL.  One can see this by introducing LcTcT uu γ/~ = , LTT γϕϕ /~ = , Lii γ=~
 and 

replacing (4) – (6) with 

  ++
′−

−==+++ )~2(
1

1

1
sin

2 Text
L

Nc ji ϕαπϕδ
βα

δδδβ &&&    (7) 
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T u
f
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2

0 β
α

β
ϕ

′
+−

′
=  ,     (8) 

and 

 )~~~(~
00 NTcTTcT uuQfu +−= ϕ&&  .     (9) 

 

Below we thus consider only the case γL = 1 unless otherwise stated.  We note that the static 

voltage vT across the tank circuit, the transfer function dvT/dϕext and the amplitude of the 



 10 

voltage noise 2/1
vs  also scale with γL.  By contrast, flux noise 2/ ϕϕ vss v=  and noise energy e 

are independent of γL.  

To optimize e for a set of parameters (for example id, f, ϕext, α, Lβ ′ ) the first step is to guess 

an initial set of reasonable parameters and calculate vT, dvT/dϕext and sv, and from those sϕ  and 

e.  Subsequently the parameters are varied one by one with a suitable step width.  After each 

step the parameter value yielding the lowest value of e is adopted and the next parameter is 

varied until e has saturated or some maximum iteration number is exceeded. During the 

variation, depending on whether or not a new value of the parameter reduces e, the step width 

to change this parameter during the next iteration is either increased or decreased by typically 

a factor of 2. Figure 2 gives an example how e and the varied parameters evolve during the 

optimization procedure. Fixed parameters for this simulation were Q0 = 100, ϕext = 0.25, f0 = 

0.1, βc = 0 and Γ = ΓT = 0.025.  After 5 steps e already reached a level of about 0.6.  With 

subsequent iterations it decreased only slowly.  Furthermore, the parameters varied reached 

almost constant values after about 15 iterations.  As we see later, for the above fixed 

parameters, the value e ≈ 0.5 is reached for a coupling parameter α close to 1.  The 

optimization procedure of Fig. 2, which was terminated after 15 iterations, thus would have 

yielded a noise energy that is about 20 % too large, with α ≈ 0.5 well below 1.  Consequently, 

we will have a typical systematic error in e of some 10-20%.  We also note that there are 

many local minima for e that act as potential error sources; for example, as a function of id, 

the transfer function and thus also e oscillates.  The values given below for optimized noise 

energies should always be regarded as upper limits.  Another issue to address is the extent to 

which the transfer function rather than e should be optimized to find an optimal bias point.  At 

least for dc SQUIDs, this procedure is frequently used.  However, in the calculations for the rf 

SQUID we found that, on the one hand, for some parameters dvT/dϕext can exhibit jumps or 

hystereses [for example, see Figs. 4(c) and 5(c)] mimicking infinite transfer functions.  On the 
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other hand, we sometimes found that large transfer functions coincide with a large value of sv, 

leading to a non-optimal value of e, while for some other, non-optimal, values of dvT/dϕext 

both  sv and e were much lower.  We conclude that to find the lowest noise energy this 

quantity itself needs to be optimized.  

 

 

3. CURRENT-VOLTAGE CHARACTERISTICS AND TRANSFER FUNCTIONS 

 

We begin by comparing the numerically calculated current-voltage characteristics (id vs vT) 

with analytical expressions obtained by Hansma 11 and Chesca 18.  At zero temperature, 

converted to our units, Hansma’s  expression is 

 

( )
2/1

2

2

12
0

2

sin
~

cos
~

)()2cos(
1

~
1  + +′⋅
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+
= θθαγβπϕ
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TTTLLextd iiiJ
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Q
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Here, LQA γα /2
~

0= ,  fvi LLTT
2/

~ γβ ′= , 2/arctan πξθ += , the detuning parameter 

)1/(2 00 −= ffQ dξ  and J1(x) is the first order Bessel function. Chesca 18 gives several 

expressions depending on the values of Lβ ′  and Γ.  For 1<<′Lβ , in our units, Chesca obtains 
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where LT fva γ/~ = , LdR f βω ′⋅= , extLL aJF πϕββ 2cos)()2/exp( *
1′Γ−′= , 

2/12* )1/(~
Raa ωα +=  and 1/

~
0 −= ffdξ .  Chesca18 gives another expression for larger values 

of Lβ ′  that is valid for large fluctuations (Γ >> 1) only, and that is not reproduced here.  In 

contrast to (10), (11) contains the temperature via the function F.  In addition, the argument of 

the Bessel function contains a factor 2/12 )1( −+ Rω  that is absent in (10); for Ldf β ′  << 1 this is a 

small correction.  Note that in both (10) and (11) id is calculated as a function of vT, while 

numerically, we calculate the inverse function.  Thus, to obtain the transfer function dvT/dϕext 

at fixed id from (10) or (11) we compute the zeroes of f(id) = id(vT)-id for given values of id. 

Figure 3(a) shows a comparison of the zero temperature id–vT characteristics calculated 

numerically (solid circles) from (10) (referred to as ‘PH’ – solid lines) and from (11), 

(referred to as ‘BC’ –  dashed lines).  The curves are for ϕext = 0 and 0.5.  Other parameters 

are Q0 = 100, f0 = 0.1, fd = 0.101 (ξ = 2 or ξ~  = 0.01) and α = 0.1.  We see that discrepancies 

between the curves are small for this set of parameters.  This also holds for Fig. 3(b) where 

we plot the transfer function dvT/dϕext at ϕext vs. id = 0.25 as well as for Fig. 3(c) where we 

plot vT vs. ϕext for id = 0.8, that is for a bias near the optimal transfer function.  Other values 

of, for example, the detuning parameter give similarly good agreement.  The differences 

become more severe, however, at larger values of α.  Figure 4 shows plots of id vs. vT, transfer 

function vs. id and vT vs. ϕext for id = 0.25, organized as in Fig. 3; the parameters are the same 

except for α, which is now 0.3.  Although the overall shapes of the numerical and the 

analytical curves are similar, and, for example, the amplitude of the maximum transfer 

function is comparable, at a fixed value of id both vT and dvT/dϕext differ strongly, showing 

that comparisons between the numerical and analytical curves cannot be made by calculating 

the SQUID performance simply at a fixed set of parameters.  Note that in Fig. 4(c) the BC 

curve exhibits jumps near ϕext = 0.05 and 0.95.  Also, both analytical id –vT characteristics in 
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Fig. 4(a) exhibit regions of negative slope which would result in hystereses in a current biased 

situation.  For other sets of parameters such jumps and hystereses also appear in the numerical 

calculations, creating regions of parameters to be avoided.  One should further note that the 

values of Q0, f0, fd and α are not in the regimes where realistic devices are operated.  

Experimentally, Q0 is typically very large (>>>>~ 105) while α is extremely small.  A value of f0 ≈ 

fd = 0.1 with a characteristic junction frequency of 100 GHz corresponds to fd 10 GHz, which 

is higher than typical rf frequencies used.  More realistic values of Q0, f0 and fd are, however, 

beyond reach since computation times would become intolerably long. 

As a third example Fig. 5 (a) shows id –vT characteristics for  ϕext = 0 and ϕext = 0.5 for f0 = 

0.1, Q0 = 100  and ΓT = 0.025 (solid circles).  Using the optimization routine, we find that the 

parameters f = 0.1066, α = 0.725 and 21.1=′Lβ  give a noise energy e ≈ 0.5 at id = 0.369 (see 

also sections 4 and 5).  In this particular optimization βc = 0 and ϕext = 0.25 were kept fixed 

(we see below that for 5.1~
L <<<<′′′′β  e does not depend significantly on βc provided the drive 

frequency is well below the LC resonance of the SQUID loop, which can be expressed as 

2/1)( −′ cL ββ ; also, for ϕext near 0.25 e is almost minimal).  The id – vT curves at both ϕext = 0 

and 0.25 exhibit several jumps and differ only weakly from the numerical zero temperature 

calculation for the same parameters, shown by open circles in Fig. 5(a).  For comparison, we 

also display the zero temperature id – vT curve calculated from Hansma’s Eq. (10) which, for 

these parameters, does not differ too much from the numerical curve.  As is clearly seen, in a 

current-biased situation this analytical characteristic is also hysteretic.  Figure 5(b) displays 

the numerical transfer function dvT/dϕext vs. id at ϕext = 0.25 for Γ = ΓT = 0.025 (solid circles) 

and for Γ = ΓT = 0 (line).  The difference between the two curves is barely visible.  Prominent 

features, however, are the large spikes at  id = 0.19 and 0.66.  At least at the lower of these 

values the transfer function may even diverge (the transfer function has been calculated from 

the difference in vT at ϕext = 0.25 ± 0.01, of course leading to a finite value of dvT/dϕext).  
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Perhaps suprizingly, the optimal value of e is obtained far from these spikes, namely at the 

bias indicated by the arrow in Fig. 5(b).  Finally, Fig. 5(c) displays vT vs. ϕext for the optimal 

bias current id = 0.369. There is a bistable region near ϕext = 0 and ϕext = 1. Voltage jumps are 

indicated by vertical arrows; tilted arrows indicate the direction of flux sweeps.  Outside this 

region, and particularly near ϕext = 0.25, vT vs. ϕext is continuous, however. 

Finally, we demonstrate that the transfer function can be quite robust against noise. Figure 

6(a) shows dvT/dϕext vs. id for various values of Γ = ΓT  (0, 0.025, 0.3, 1.0 and 3.0) and the 

solid circles in Fig. 6(b) show the transfer function at id = 0.369 (that is, at the optimal bias for 

Γ = ΓT = 0.025) vs. Γ = ΓT.  All other parameters are as in Fig. 5 (b).  In (a) the spikes in 

dvT/dϕext become strongly suppressed with increasing noise; in addition, note that the first 

spike shifts to lower values of id with increasing noise parameter.  The modulus of the transfer 

function near id = 0.369 even increases slightly with increasing Γ for Γ ≤ 1.  It then drops with 

further increase of Γ but still has half of its original value at Γ = 3.  For comparison, the 

maximum transfer function of a dc SQUID is suppressed by more than an order of magnitude 

when Γ is increased from 0.025 to 1.  One thus sees already at this juncture that the noise 

performance of the rf SQUID degrades much less rapidly than that of the dc SQUID when Γ 

becomes large.  The open and grey symbols in Fig. 6(b) show the transfer function vs. Γ  for 

ΓT = 0 and ΓT = 10Γ.  The curve for ΓT = 0 does not differ much from the curve for ΓT = Γ, 

showing that the degradation in dvT/dϕext is dominated by fluctuations in the SQUID loop.  

The effect of the tank circuit fluctuations becomes more severe for ΓT = 10Γ, but even then 

reasonable transfer functions can be obtained at least up to Γ = 1. 
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4. VOLTAGE NOISE AND NOISE ENERGY: EXAMPLES 

 

We begin this section by looking at sample power spectra svT and suT of the (low-

frequency) tank voltage vT and (high-frequency) voltage uT (Fig. 7).  In Fig. 7(a) the black 

curves are plotted for Γ = ΓT  = 0.0125, 0.025 and 0.05.  Other parameters are as in Figs. 5 

and 6.  To illustrate the influence of the SQUID on the tank circuit we include the grey curve 

with Γ = ΓT  = 0.025 and α = 0. We see that the spectra exhibit spikes at multiples of the drive 

frequency fd = 0.1066, with at least 6 harmonics clearly visible.  The continuous part of each 

spectrum is highly structured, with a peak near f = 0.09 and a shoulder near f = 0.02.  In the 

vicinity of the drive frequency the "background"  of suT (which we define as the average value 

of suT some 1-3 channels away from the drive frequency) amounts to about 0.02 (SUT ≈ 2kBTR) 

for Γ = ΓT = 0.05, decreasing linearly with Γ.  When α is set to zero, as shown by the grey 

curve for Γ = 0.025, suT is greatly reduced for frequencies below about 0.3.   

Figure 7(b) shows the low frequency power spectra svT, that is, the noise power of the 

Fourier component of uT at the drive frequency.  The spectra are white, with average values of 

0.0059, 0.012 and 0.028 for Γ = ΓT = 0.0125, 0.025 and 0.05.  Note that these values are 

roughly a factor of 3.5 lower than the values of the background of suT near the drive 

frequency.  One might have expected that the two values would coincide, at least roughly.  

However, svT monitors only the amplitude fluctuations of uT and can thus be substantially 

lower than the background of  suT near fd. Unfortunately, we found the ratio of suT and svT to 

depend on the various parameter values.  An optimization of the noise energy using the 

background in suT rather than svT, which would have been much faster than a direct 

optimization, is thus not possible.  For the three Γ values above we found transfer functions 

dvT/dϕext of -1.08, -1.09 and -1.12, respectively.  We thus find e = 0.52, 0.52 and 0.56, 
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respectively, with error bars of about ±10% that include scatter in both voltage noise power 

and transfer function. 

To illustrate the low-frequency voltage noise power further, for the above parameters Fig. 8(a) 

shows the transfer function dvT/dϕext, the voltage noise power svT and the normalized noise 

energy e as functions of id for ϕext = 0.25.  We see that that e is indeed lowest (e ≈ 0.5) near 

the bias id ≈ 0.37 found by the numerical optimization routine, although the transfer function 

is not optimized here.  The voltage noise becomes quite large near the maxima of dvT/dϕext, 

leading to an optimum bias current between these maxima.  Figure 8(b) shows dvT/dϕext, svT 

and e as functions of ϕext at id = 0.369.  The minimum of e, about 0.45, is in fact near ϕext = 

0.28, that is, slightly above the value of 0.25 which had been fixed for optimization.  To 

investigate the optimal parameter set further, we performed an optimization with variable 

applied flux, using as initial conditions the optimal parameters found for ϕext = 0.25, f0 = 0.1, 

Q0 =100 and βc = 0.  The result was a noise energy e = 0.4, with a transfer function of  

-1.12, at ϕext = 0.3 and optimal parameters fd = 0.1066, id = 0.469, α =  0.8 and Lβ ′ = 1.09.  

The reduction in e compared to the value at ϕext = 0.25 is only about 10% and we thus fix ϕext 

= 0.25 for further calculations.  We note here that a normalized noise energy e ≈ 0.4 

corresponds to a noise energy RITΦkε B 00 /8.0≈   that is, RTLkε B /5====  for 09.1=′Lβ .  For 

comparison, a symmetric dc SQUID with an inductance parameter 

1//2 00 ≈′== πβΦβ LL LI  has a noise energy e ≈ 2 for Γ = 0.05, corresponding to 

RTLkRITk BB /8/4 00 ≈≈ Φε .  For the given values of L/R and temperature the rf SQUID, 

with the parameters discussed here, has a low-frequency noise energy ε about a factor of 8/5 

lower than for this dc SQUID.   

 

 



 17 

5. OPTIMIZED NOISE ENERGY 

 

We next turn to the optimized noise energy.  For the limit 1<<′Lβ  Chesca finds 18 
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This equation, which is for βc = 0, is not yet optimized for α and Lβ ′ . For 1<<′ dL fβ  and 

1<<′LβΓ  (12) reduces to LdLToptBC fQe βαβΓΓ ′′+⋅≈ /)/1(24.0 0
2

, , precisely the expression 

given by Danilov, et al. 17  For 21.1=′
Lβ , Q0 = 100, fd = 0.1066, α  = 0.725 and Γ = ΓT = 

0.025 we find eBC,opt  ≈ 0.23, which is a factor of about 2 below the value obtained 

numerically.  This difference is not unreasonable considering that the above values for Lβ ′  

and α clearly stretch the limit of the analytic formula.  

In terms of numerical calculations, Fig. 9 shows e vs. f0 as solid circles, with f0 ranging 

from 0.01 to 1, for Q0 = 100, ϕext = 0.25 and βc = 0.  The noise energy was optimized with 

respect to fd, α, Lβ ′  and id.  The graph also shows the values of α and (dvT/dϕext)/30f0 (scaled 

to fit into the figure).  The optimized parameter values, together with the resulting values of  

dvT /dϕext, svT and e, are also listed in Table 1.  Throughout the frequency range investigated, e 

stays almost constant, with a value near 0.5 (for comparison, from (12) we would have 

expected a quadratic increase in e).  In all cases the optimal value of Lβ ′  is near 1, although 

the scatter for this and the other optimized parameters is appreciable, indicating that near 

optimum values for e can be achieved over relatively large parameter ranges.  However, at 

least for small drive frequencies, α should be quite large and is likely to be out of the 

experimental range.  When, on the other hand, we fix α to the modest value of 0.2 in Fig. 10, 

we see that e increases with decreasing f0; at the lowest value shown, f0 = 1/60, e ≈1.5.  As a 
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guide to the eye we have plotted the function 3.0
0/4.0 f , which approximately follows the 

computed points.  In the graph we have also plotted the transfer function |dvT/dϕext|/30f0, 

which remains essentially constant at the value of 1; thus, when we include the factor γL,  

dvT/dϕext ≈ -30 γLf0. 

How serious is the problem of undercoupling? Figure 11(a) displays e vs. α  for f0 = 0.5, 

ϕext = 0.25 and of Q0 = 50, 100 and 200.  One simulation for Q0 =100 was performed for Γ = 

0.025, ΓT = 0, all others for Γ = ΓT = 0.025.  The large value of f0 was chosen to allow the 

calculations to be performed in a reasonable time.  Figure 11(b) shows a similar plot for f0 = 

0.1 and Q0  = 100 and 200.  Selected values for the optimized parameters are listed in Table 2. 

For both values of f0, e increases with decreasing α. For f0 = 0.5 the curves for Q0 = 50 and 

100 can be described by the functional form [dotted lines in Fig. 11(a)] 0.5+0.33/Q0α2 

suggested by (12), although the constants differ somewhat.  This form works less well for Q0 

= 200, however, and for f0 = 0.1 this dependence also does not fit the data.  In Fig. 11(b) we 

have plotted the empirical function 6.0/38.0 α  (dashed line) that fits the data reasonably well 

for Q0 = 100.  For f0 = 0.1 and α = 0.2 we also investigated the Q0 dependence of e in more 

detail and found that, for Q0 between 50 and 400, e decreased by only about 25%, that is, the 

dependence on Q0 is very weak, indicating that the effective quality factor of the system 

which we define via dLeffT ifQv 0β ′=  (in absolute units: deffT ILQV 0ω= ) is dominated by the 

SQUID.  For example, for Q0 = 200, α = 0.2 and id = 0.15 listed in Table 2, we find a tank 

circuit voltage vT = 0.88, yielding Qeff ≈ 55, much less than Q0.  Another interesting prediction 

of (12) is that, for ΓT = 0, e should be independent of α and Q0.  As can be seen in Fig. 11(a) 

for f0 = 0.5 and Q0 = 100 we indeed observe that e is independent of α for 0.1 <<<<~  α <<<<~  1; 

however, e increases below α ≈ 0.1.  Furthermore, Fig. 11(b) shows that for f0 = 0.1 and Q0 = 

100 e is strongly reduced for ΓT = 0 and α <<<<~  0.3.  In Fig. 11(b) we have plotted the fitting 
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function 0.45[(1-α)2 + 1] which approximately fits the data.  We again emphasize, however, 

that, due to the error margins of the numerical data, such fit functions should not be taken too 

literally. 

We next turn to the dependence of e on Lβ ′  and βc .  As we have already seen, the lowest 

values were found forLβ ′  slightly above unity.  Figure 12(a) shows simulations for f0 = 0.5, Γ 

= ΓT = 0.025, Q0 = 100 and ϕext = 0.25 for βc = 0 and 1; Fig. 12(b) shows the results for f0 = 

0.1.  As we see, in all cases there is indeed a pronounced minimum in e (≈0.5) for Lβ ′  slightly 

above 1.  Optimized values for α  were in the range 0.25 – 0.6 for f0 = 0.5 and above 0.8 for f0 

= 0.1 (cf. Table 3).  We further see that there is no significant difference for the two βc values 

nor for the two drive frequencies as long as Lβ ′  is below about 1.5; at higher values of Lβ ′ , βc 

= 0 yields much better results. We also compared the numerical curves in Fig. 12 with the 

functional dependences suggested by (12) using LLfe ββ ′+⋅≈ /)'1(4.0 22
0  (that is, we ignore 

the contribution from the tank circuit; we also increased the prefactor 3/4π ≈ 0.24 to 0.4).  The 

agreement of the scaled analytical formula is excellent up to Lβ ′  ≈ 1, where a linear increase 

of e takes over, fitted approximately in Fig. 12(a) by e ≈ 0.36 Lβ ′ .  For large values of Lβ ′ , the 

intrinsic noise energy is predicted to be rfLI ωΓε 2/3/42
0≈ , or in our notation, 

dL fe πΓβ 8/3/1′≈ .  The latter expression displays the scaling withLβ ′ .  The prefactor, with fd ≈ 

0.5 and Γ = 0.025, amounts to only 0.023 and is thus much lower than the value 0.36 used for 

the fit.  However, the analytical formula is valid in the limit of small drive frequencies which 

is not fulfilled here. 

Finally, we examine the issue of βc, which appears in several ways.  First, it determines the 

damping of the isolated junction. In a quasistatic situation (that is, for low enough drive 

frequencies) and for large values of Lβ ′ , when multiple transitions in the quantum states of the 

SQUID loop are possible, the switching between these states becomes irregular when βc is 
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large, leading to increased noise.  This effect may explain why e increases so strongly with βc 

for Lβ ′  >>>>~  2.   For  situations where Lβ ′  < 1 or when only two flux quantum states are possible 

the switching effect should be greatly reduced, and this is indeed observed in Fig. 12 where 

the curves βc =0 and βc =1 essentially coincide.  To study dynamic effects, we should 

investigate two more characteristic frequencies: the junction plasma frequency, cplf β/1=  

in normalized units, and the (normalized) LC resonance frequency of the SQUID loop, 

cLcLC LCff ββπ ′== /1/2/1 .  For Lβ ′  values near or below the optimum of e vs. Lβ ′ , fLC 

<<<<~  fpl, while for βc → ∞ both frequencies tend to zero.  More realistically, both the plasma and 

LC resonance frequencies are on the order of several gigahertz.  Practical drive frequencies 

are thus in general below resonance, in which case we expect that e becomes more or less 

independent of βc.  When, on the other hand, the drive frequency approaches fLC or fpl we 

expect chaotic effects (and perhaps even stable parameter ranges where the noise performance 

becomes better than that discussed in this paper).  Furthermore, when fd becomes larger than 

fLC the SQUID loop can no longer follow the oscillating flux drive, and one expects the device 

to  cease to function (indeed, we have seen this in simulations).  To examine the effect of βc 

more closely we choose  Lβ ′  = 1.5 and take the parameters of Fig. 12(b) as starting conditions 

to vary βc.  Setting id = 0.49, fd = 0.11 (ξ=22.75), α = 0.49, Q0 = 100, f0 = 0.1, ϕext = 0.25 and 

Γ = ΓT = 0.025, and increasing only βc we find the modulus of the transfer function decreases 

(Fig. 13, open circles) and the noise energy e increases, reaching a value of about 1 for βc = 

10 (Fig. 13, open squares).  On the other hand, when we vary id and fd, the decrease in 

|dvT/dϕext| is more modest (Fig. 13, solid circles), and e remains low for βc < 35 (Fig. 13, solid 

squares).  For larger values of βc, e increases strongly.  At βc = 35 the SQUID loop LC 

frequency is 0.14, comparable to the drive frequency fd  = 0.11.  
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Thus, we see that in the parameter range of interest βc can be allowed to reach substantial 

values.  Consequently, only a moderate damping of the junction is required and I0R can be 

much larger than for dc SQUIDs where βc < 1 is mandatory.  Thus, even for comparable 

values of e the dimensioned noise energy ε can be lower for rf SQUIDs than for dc SQUIDs.  

Is shunting necessary at all?  We believe so, because otherwise the nonlinear quasiparticle 

resistance, of, say, an Nb tunnel junction would lead to additional up and down conversion of 

noise and probably also to additional chaotic effects. 

 

 

6. CONCLUSIONS 

 

We have seen from our numerical analysis that SQUID noise energies e of 0.4-0.5 can be 

achieved over a wide parameter range.  The optimal value for Lβ ′  is 1 or slightly higher.  In 

absolute units we thus obtain RITkB 00 /)18.0( Φε −≈  or RTLkB /)65( −≈ε . In the latter 

formulation the noise energy for the rf SQUID is not very different from that for the dc 

SQUID [ RTLkB /)98( −≈ε ].  However, for the dc SQUID πββ //2 00 LL LI ′=Φ=  should 

be about 1.  Thus, for a given value of L, the rf SQUID allows for a lower value of I0 than 

does the dc SQUID.  When we fix I0R for a given junction, ε is a factor of 4-5 lower for the rf 

SQUID than for the dc SQUID.  Furthermore, for the dc SQUID βc must be lower than 1 

while for the rf SQUID it can be substantially higher in the regime where Lβ ′  is near 

optimum.  If βc is determined by shunting the junction, R and thus I0R for the rf SQUID can 

be by much higher than for the dc SQUID.  The above discussion was for the low temperature 

limit; however, we also saw that the rf SQUID tolerates much higher values of the noise 

parameter Γ – which can be about unity – without degrading the noise performance  

significantly.  
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What are the drawbacks of the rf SQUID?  We saw that undercoupling is a problem even 

for drive frequencies as high as 10% of the junction characteristic frequency (that is, f0 = 0.1).  

Using fc = I0R/Φ0 = 100 GHz as a typical value for the junction characteristic frequency, 

realistic drive frequencies are not much greater than 0.01.  As indicated by our frequency 

dependent calculations (Fig. 10) normalized noise energies of 1.5-2 – which are comparable 

to the case of dc SQUIDs –should still be feasible, provided that the coupling parameter α can 

be made as large as 0.2.  We have further seen that, in contrast to the analytical predictions for 

low values of α and Lβ ′ , for Lβ ′  of order unity a scaling of e as 1/α2Q0 is not observed.  

Increasing Q0 well beyond 100 leads to a saturation of e, indicating that the effective quality 

factor is dominated by dissipation in the SQUID.  It thus seems that the focus should be on 

making α as large as possible rather than choosing very large values of Q0 at the expense of 

small values of α. 

We now give a realistic example, assuming that α = 0.2 is feasible.  Figure 14(a) shows id 

vs. vT together with vT vs. ϕext (upper inset) and dvT/dϕext vs. id (lower inset) for a device with 

Q0 =100, f0 = 0.1, fd = 0.1011 and Lβ ′  = βc = 1. In Fig. 14(b), we have plotted e, |dvT/dϕext| and 

svT/Γ vs. Γ.  We have fitted the noise energy with the expression 0.95 expΓ.  Assuming the 

SQUID parameters fc = 100 GHz and L = 50 pH and T = 4.2 K, we find I0R ≈ 207 µV, and 

with 1=′Lβ  we obtain I0 ≈ 6.6 µA, R ≈ 31 Ω and Γ ≈ 0.027.  We note that R is rather large 

but should easily be accessible experimentally.  For α = 0.2 and f0 = 0.1 (10 GHz), e ≈ 0.95 

yielding a noise energy ε ≈ 10h .  For α = 0.2 and f0 = 0.01, using the dependence of e vs. f0 

shown in Fig. 10, we see that the noise energy would be approximately doubled. Let us 

further assume that for a 10 GHz (1 GHz) drive we have LT = 5 nH (50 nH).  The reduced low 

frequency voltage noise power svT/Γ ≈ 5.5 at 10 GHz then corresponds to 2/1
VS ≈ 1 nV/Hz1/2; 

for the 1-GHz drive 2/1
VS  is reduced by about a factor of 3. For the two drive frequencies CT 
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should be about 50 fF (0.5 pF) and, with Q0 = 100, we obtain RT ≈ 3Ω in both cases.  These 

numbers are certainly attainable experimentally and a device like this should be feasible. 

We briefly comment on some of the many remaining open questions.  One question 

regards the detuning parameter ξ.  Most of our optimizations yielded positive values for ξ, 

that is, the device was driven slightly above resonance.  We performed some simulations with 

negative ξ and also found noise energies of about 0.5.  However, in general, negative values 

of ξ seemed to result in more instabilities (jumps and hystereses in the vT vs. ϕext  

characteristics) and were thus less accessible to our optimization procedures. Another 

question regards the regime of large values ofLβ ′ . An important parameter introduced in 

previous analyses of the dissipative regime 4-8 was the slope parameter η describing the finite 

slope of the current steps in the id vs. vT curves (an extrinsic noise term proportional to η 

actually dominates the rf SQUID performance in the dissipative regime). It would be 

interesting to evaluate such dependencies and the noise performance in parameter ranges far 

from optimum.  Unfortunately, systematic simulations on these issues are much too time-

consuming to be included in the present investigation.  Furthermore, one can distinguish a 

variety of different regimes of operation, for example as classified by the various 

characteristic (resonance) frequencies of the junction, the SQUID loop and the tank circuit 

and their relative ratios.  A thorough discussion is again far beyond the scope of this paper. 

Finally, another quantity of considerable interest for SQUID amplifiers – the noise 

temperature – is analyzed in the paper that follows.  The noise temperature requires the 

analysis of a more complete circuit, including an input circuit coupled to the SQUID loop and 

an output preamplifier.  We shall see that the optimal noise temperature can reach very low 

values even for realistic parameters, hopefully stimulating further experimental efforts to 

improve the noise properties of these devices. 
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    APPENDIX A: LIST OF SYMBOLS 
 
C: junction capacitance 

CT: capacitance of tank circuit 

]/2/[2/ 00 RITkse BL ΦεβΓπ ϕ =′= : normalized low frequency noise energy  

00 /ΦRIf c = : junction characteristic frequency 

fd: drive frequency (used either in absolute units or normalized to fc) 

TTcTT CLfCLRIf ππΦ 2/12/ 000 == : normalized unloaded tank circuit resonance 

frequency  

cLcLC LCff ββπ ′== /1/2/1 : normalized LC resonance of SQUID loop 

cplf β/1= : normalized junction plasma frequency 

iT =IT/I0: normalized bias current of tank circuit 

fvi LLTT
2/~ γβ ′=  

id = Id/I0: normalized amplitude of drive current of tank circuit 

0,/2 NnoiseN ii ⋅= τΓ  normalized noise current in SQUID 

iN,0 : Gaussian distributed random numbers with zero average and mean square deviation of 1 

iNT,0 : Gaussian distributed random numbers with zero average and mean square deviation of 1 

I0: junction critical current in the absence of noise 

Id: amplitude of oscillating drive current 

IT: bias current of tank circuit 

I1, I2: currents through arms of tank circuit 

IN : noise current in SQUID loop 

IN,T: noise current in tank circuit 

j=J/I0: normalized circulating current in SQUID 

J: circulating current in SQUID loop 

kB: Boltzmann constant 

L: SQUID inductance 

LT: inductance of tank circuit 

M: mutual inductance between SQUID and tank circuit 

Q: quality factor (general) 

TTT RCLQ //0 = : unloaded quality factor of tank circuit 

dTdLTeff ILVifvQ 00 // ωβ =′= : effective quality factor  



 2 

R: junction resistance 

RT: tank circuit resistance 

SI = 4kBT/R: spectral density of current noise power in SQUID loop 

SIT = 4kBTT /RT: spectral density of current noise power in tank circuit 

SUT: spectral density of high frequency voltage noise across tank circuit 

SVT: spectral density of low frequency voltage noise across tank circuit 

svT = SV,T/[I0RΦ0/2π]: spectral density of normalized low frequency voltage noise  

svT = SU,T/[I0RΦ0/2π]: spectral density of normalized high frequency voltage noise 

2)//( extTvT ddvss ϕϕ = : spectral density of normalized low frequency flux noise  

T: temperature of SQUID 

TT: temperature of tank circuit 

u =U/I0R: normalized voltage 

0,0
2

0 /2/ NTnoiseTLLNTRNT iQfiu ⋅⋅′=⋅= τΓγβγ : normalized noise voltage across tank 

circuit resistor 

UCT: voltage across tank circuit capacitor 

ULT: voltage across tank circuit inductor 

UNT: noise voltage across tank circuit  resistor 

URT: voltage across tank circuit resistor 

vT : normalized voltage amplitude across tank circuit at drive frequency 

TLLM /=α : coupling parameter 

0
2

0 /2 Φπβ CRIc = : Stewart-McCumber parameter 

00 /2 Φπβ LIL =′ : inductance parameter 

LLTL /=γ : inductance scaling parameter; throughout the manuscript calculations are for 

Lγ =1;   

scaling with Lγ :  

LLcTLcT uu γγγ ⋅== )1()( , LLTLT γγϕγϕ ⋅== )1()( , LLdLd ii γγγ /)1()( == ; 

LLTLT vv γγγ ⋅== )1()( ;  LLextTLextT ddvddv γγϕγϕ ⋅== )1(/)(/ ;  

LLvLv ss γγγ ⋅== )1()( 2/12/1 ; )1()( == LL ss γγ ϕϕ ; )1()( == LL γεγε   

0
2

0 // QfRR LLTR γβγ ′== : ratio of tank circuit resistor to junction resistor 

00/2 ΦπΓ ITkB= : noise parameter for SQUID 

00tan /2 ΦπΓ ITk kBT = : noise parameter for tank circuit 
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δ: gauge invariant phase difference across Josephson junction 

ε: low frequency noise energy  

ϕ  =Φ/Φ0: normalized flux through SQUID loop 

ϕT =2πΦT/Φ0: normalized flux through tank circuit inductor 

Φ: total flux through SQUID loop 

Φext : applied flux 

ΦT: flux through tank circuit inductor 

Φ0: flux quantum 

RI 00 2/ πΦτ = : normalized time 

τnoise: normalized time step for noise calculations 

)1/(2 00 −= ffQ dξ : detuning parameter 
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Tables 
 
 
f0 id ξ α Lβ ′  dvT/dϕext svT e 

1 0.444 1.25 0.194 1.103 -23.7 5.8 0.58 
0.5 0.338 1 0.231 1.247 -12.4 1.84 0.6 

0.333 0.331 4.5 0.413 1.25 -5.14 0.3 0.58 
0.25 0.263 3.5 0.313 1.075 -5.45 0.26 0.52 
0.2 0.219 2.5 0.250 1.031 -5.26 0.26 0.56 

0.167 0.244 3.75 0.334 0.975 -3.49 0.104 0.56 
0.143 0.388 12.4 0.625 1.116 -1.69 0.024 0.48 

0.1 0.369 13.2 0.725 1.213 -1.08 0.012 0.48 
0.0333 0.281 9.2 0.706 1.05 -0.43 0.00185 0.6 

0.01 0.3 9.8 0.772 1 -0.127 0.00016 0.63 
Table 1 
 

 
 
α f0 Q0 ΓT id ξ Lβ ′  dvT/dϕext e 

0.05 0.5 100 0.025 0.44 -0.11 1.56 -18.2 1.7 
0.2 0.5 100 0.025 0.29 1.25 1.1 -14.5 0.6 
0.5 0.5 100 0.025 0.58 10 1.2 -6.5 0.5 
0.7 0.5 100 0.025 0.98 29.5 1.36 -4.4 0.5 
0.9 0.5 100 0.025 1.5 45.5 1.24 -2.9 0.55 
0.05 0.5 200 0.025 0.24 0.14 1.39 -29.9 1.0 
0.2 0.5 200 0.025 0.24 2.3 1.18 -15.8 0.55 
0.05 0.5 100 0 0.5 0.13 1.05 -15.4 0.6 
0.2 0.5 100 0 0.3 0.94 1.05 -14.0 0.5 
0.3 0.5 100 0 0.38 1.7 1.13 -9.7 0.5 
0.05 0.1 100 0.025 0.34 0.7 1.525 -6.0 2.6 
0.2 0.1 100 0.025 0.19 2.1 1.1 -3.15 1.1 
0.5 0.1 100 0.025 0.29 8.8 1.11 -1.45 0.6 
0.75 0.1 100 0.025 0.44 18.4 1.27 -1.0 0.45 
0.05 0.1 200 0.025 0.32 1.9 1.31 -6.1 2.0 
0.2 0.1 200 0.025 0.15 3.7 1.08 -3.4 0.9 
0.5 0.1 200 0.025 0.34 18.4 1.31 -1.5 0.5 
0.05 0.1 100 0 0.41 0.5 1.08 -3.4 0.75 
0.2 0.1 100 0 0.24 2.1 0.85 -3.0 0.65 
0.5 0.1 100 0 0.35 8.2 0.88 -1.55 0.45 
0.7 0.1 100 0 0.41 12.7 1.01 -1.15 0.4 
Table 2  
 



 2 

 
 

Lβ ′  βc f0 id ξ α dvT/dϕext e 

0.25 0 0.5 1.22 7.77 0.51 -4.6 1.7 
0.5 0 0.5 0.77 8.24 0.46 -6.3 0.85 
0.75 0 0.5 0.7 10.7 0.45 -6.8 0.6 
1 0 0.5 0.515 8.0 0.42 -8.0 0.55 
1.25 0 0.5 0.58 10.5 0.52 -6.1 0.5 
1.5 0 0.5 0.53 6.5 0.47 -6.7 0.55 
2 0 0.5 0.45 3.7 0.38 -7.8 0.7 
3 0 0.5 0.28 2.7 0.24 -13.4 1.15 
0.25 1 0.5 1.5 10.4 0.62 -3.6 1.6 
0.5 1 0.5 0.73 5.37 0.41 -6.4 0.85 
0.75 1 0.5 0.53 3.3 0.36 -7.9 0.6 
1 1 0.5 0.75 6.8 0.53 -5.5 0.5 
1.25 1 0.5 0.58 -0.82 0.33 -8.1 0.55 
1.5 1 0.5 0.46 -1.26 0.29 -11.0 0.6 
2 1 0.5 0.67 -2.83 0.33 -8.0 0.7 
3 1 0.5 0.28 3.79 0.30 -9.0 1.45 
0.25 0 0.1 1.05 12.5 0.94 -1.0 2.0 
0.5 0 0.1 1.05 26.5 0.95 -0.85 0.85 
0.75 0 0.1 0.8 23.5 0.82 -0.97 0.6 
1 0 0.1 0.63 24.25 0.83 -0.94 0.5 
1.25 0 0.1 0.61 25.75 0.83 -0.92 0.5 
1.5 0 0.1 0.49 22.75 0.83 -0.89 0.6 
2.5 0 0.1 0.74 18.25 0.84 0.81 1.2 
0.25 1 0.1 1.05 12.5 0.93 -1.0 2.0 
0.5 1 0.1 0.73 13 0.78 -1.2 0.95 
0.75 1 0.1 0.73 19.5 0.78 -1.05 0.65 
1 1 0.1 0.7 26.5 0.81 -0.92 0.5 
1.25 1 0.1 0.65 27.5 0.8 -0.91 0.5 
1.5 1 0.1 0.53 22.5 0.79 -0.92 0.55 
2.25 1 0.1 0.93 23.6 0.9 0.83 1.0 
3 1 0.1 0.31 26.1 0.93 -1.2 3.5 
Table 3  
 
 



 

Figure captions 
 

Fig. 1. The rf  SQUID inductively coupled to its tank circuit. 

 

Fig. 2.  Example of the evolution of e and the parameters Lβ ′ , α, id, fd (with initial values 

shown inset) during the optimization procedure.  Fixed parameters were Q0 = 100, ϕext = 0.25, 

f0 = 0.1, βc = 0 and Γ = ΓT = 0.025. In the graph the detuning parameter ξ=2Q0(fd/f0-1) rather 

than fd is plotted. 

 

Fig. 3.  Zero temperature characteristics for the rf SQUID.  (a) id vs. vT ; (b) transfer function 

vs. id at ϕext = 0.25; and (c) vT vs. ϕext at id = 0.8.  Solid circles are numerical calculations, 

solid lines are after Hansma [Eq. (10)] and dotted lines are after Chesca [Eq. (11)].  

Parameters are Q0 = 100, f0 = 0.1, fd = 0.101, 5.0=′Lβ , βc = 0.5 and α=0.1. 

 

Fig. 4.  Zero temperature characteristics for the rf SQUID.  (a) id vs. vT; (b) transfer function 

vs. id at ϕext = 0.25; and (c) vT vs. ϕext at id = 0.8.  Solid circles are numerical calculations, 

solid lines are after Hansma [Eq. (10)] and dotted lines are after Chesca [Eq. (11)].  

Parameters are Q0 = 100, f0 = 0.1, fd = 0.101, 5.0=′Lβ , βc = 0.5 and α = 0.3.  

 

Fig. 5.  Characteristics for the rf SQUID for Γ = ΓT = 0.025 (solid circles).  (a) id vs. vT; (b) 

transfer function vs. id at ϕext = 0.25, and (c) vT vs. ϕext at id = 0.369.  Parameters are Q0 = 100, 

f0 = 0.1, fd = 0.1066, 21.1=′Lβ , βc = 0 and α = 0.725.  Open circles in (a) correspond to 

calculation for Γ = 0, dashed line shows Hansma’s result, Eq. (10), for comparison.  Arrow in 

(b) indicates the bias point for the calculation of curve (c).  Tilted arrows in (c) indicate sweep 

direction, vertical arrows voltage jumps. 



 

Fig. 6.  Numerically calculated transfer functions.  (a) dvT/dϕext vs. id for 4 values of Γ = ΓT, 

and (b) transfer function at id =0.369 vs. Γ  for  ΓT =Γ (black circles), ΓT =0 (open circles) and 

ΓT =10Γ (grey circles).  Other parameters are indicated in the figure. 

 

Fig. 7. Spectral densities of noise power.  (a) High frequency voltage uT across the inductor 

LT and (b) the low-frequency voltage noise vT across the tank circuit  for three values of Γ = 

ΓT.  Parameters are listed in (a).  In (a) a curve for α = 0 and Γ = ΓT = 0.025 has been included 

(grey line). The spectra have been averaged 100 times in (a) and 20 times in (b).  

 

Fig. 8.  Normalized low frequency voltage noise spectral density svT (grey circles), 

normalized noise energy e (black circles) and transfer function dvT/dϕext (open circles) as a 

function of (a) id, (b) ϕext and (c) Γ =ΓT  for the same  parameters as in Fig. 5(b).  In (a) and 

(b), sv has been multiplied by 10. Arrow in (a) indicates optimal bias.   

 

Fig. 9. Normalized noise energy (solid circles), optimized coupling constant α  (open circles) 

and modulus of the optimized transfer function divided by 30f0 (open squares) vs. tank 

circuit resonance frequency f0.  Fixed parameters are Q0 = 100, βc = 0, ϕext = 0.25 and Γ = ΓT 

= 0.025. Optimized parameters are α, Lβ ′ , id and fd.   

Fig. 10  Normalized noise energy e and transfer function, re-scaled as |dvT/dϕext|/30f0, vs. f0.  

Fixed parameters were α = 0.2, ϕext = 0.25, βc = 0, Q0 = 100 and Γ = ΓT  = 0.025.  Parameters 

Lβ ′ , id and fd were varied to optimize e.   

 

Fig. 11.  Normalized noise energy e vs. α for several values of Q0.  (a) f0 = 0.5, (b) f0 = 0.1.  

Other fixed parameters are ϕext = 0.25, βc = 0 and Γ = 0.025. In both graphs one curve is for 



ΓT = 0 while the others are for  Γ = ΓT. Parameters Lβ ′ , id and fd  have been varied to optimize 

e.  Dashed and dotted lines correspond to the analytical functions indicated in the figures.  

Some values of the optimized parameters are given in Table 2. 

 

Fig. 12. Normalized noise energy e vs. Lβ ′  for two values of βc.  (a) f0 = 0.5, (b) f0 = 0.1.  

Other fixed parameters are Q0 = 100, ϕext = 0.25 and Γ = 0.025.  Parameters α, id and fd have 

been varied to optimize e.  Dashed and dotted lines correspond to the analytical functions 

indicated in the figure.  Some values of the optimized parameters are given in Table 3. 

 

Fig. 13. Noise energy and modulus of transfer function vs. βc. Circles show |dvT/dϕext| and 

squares show e.  Open symbols are for fixed parameters Lβ ′  = 1.5, id = 0.49, fd  = 0.11, α = 

0.49, Q0 = 100, f0 = 0.1,ϕext = 0.25 and Γ = ΓT = 0.025.  Solid symbols indicate that id and fd 

have been optimized. 

 

Fig. 14. Example of numerical results for an rf SQUID with α = 0.2.  Parameters are Q0 =100, 

f0 = 0.1, fd = 0.1011, Lβ ′ =1 and cβ  = 1.  For Γ = ΓT = 0 (a) shows  id vs. vT for ϕext = 0, 0.25 and 

0.5, vT vs. ϕext for id = 0.24 (upper inset) and dvT/dϕext vs. id for ϕext = 0.25 (lower inset).  (b) 

Noise energy, the fitting function e = 0.95 exp(Γ), modulus of transfer function and svT/Γ vs. 

Γ. 

 



 

Table captions 

 

Table 1.  Selected parameter values and some resulting quantities for the graphs in Fig. 9 (e vs. 

f0).  Fixed parameters are Q0 = 100, ϕext = 0.25 and βc = 0; fixed values of f0 are listed.  

Optimized parameters: id, ξ = 2Q0(fd/f0-1), α, and Lβ ′ .  Resulting quantities: normalized 

transfer function dvT/dϕext, normalized voltage noise spectral density svT and normalized noise 

energy e.  

 

 

Table 2.  Selected parameter values and some resulting quantities for the graphs in Fig. 11 (e 

vs.  α).  Fixed  parameters are ϕext = 0.25 and βc = 0; fixed values of α, f0 , Q0 and ΓT are 

listed.  Optimized parameters: id, ξ and Lβ ′ . Resulting quantities: normalized transfer function 

dvT/dϕext and normalized noise energy e. 

 

 

Table 3.  Selected parameter values and some resulting quantities for the graphs in Fig. 12 (e 

vs. Lβ ′ ).  Fixed parameters are Q0 = 100, ϕext = 0.25 and Γ  = ΓT  = 0.025; fixed values of 

Lβ ′ ,βc and f0 are listed.  Optimized parameters: id, ξ and α. Resulting quantities: normalized 

transfer function dvT/dϕext and normalized noise energy e. 
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