Design and Test of a 100MW X Band TE01 Window

PDF Version Also Available for Download.

Description

Research at Stanford Linear Accelerator Center (SLAC) is in progress on a TeV-scale linear collider that will operate at 5-10 times the energy of present generation accelerators. This will require development of high power X-Band sources generating 50-100 MW per source. Conventional pillbox window designs are capable of transmitting peak rf powers up to about 30 MW, well below the desired level required for the use of a single window per tube. SLAC has developed a 75 MW TE{sub 01} window [1] that uses a 'traveling wave' design to minimize fields at the window face. Irises match to the dielectric ... continued below

Creation Information

Neilson, J.; Ives, L. & Tantawi, S. G. March 24, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Research at Stanford Linear Accelerator Center (SLAC) is in progress on a TeV-scale linear collider that will operate at 5-10 times the energy of present generation accelerators. This will require development of high power X-Band sources generating 50-100 MW per source. Conventional pillbox window designs are capable of transmitting peak rf powers up to about 30 MW, well below the desired level required for the use of a single window per tube. SLAC has developed a 75 MW TE{sub 01} window [1] that uses a 'traveling wave' design to minimize fields at the window face. Irises match to the dielectric window impedance, resulting in a pure traveling wave in the ceramic and minimum fields on the window face. The use of the TE{sub 01} mode also has zero electric field on the braze fillet. Unfortunately, in-band resonances prevented this window design from achieving the desired 75MW power level. It was believed the resonances resulted from sudden steps in the circular guide to match the 38mm input diameter to the overmoded (TE{sub 01} and TE{sub 02} mode propagating) 65 mm diameter of the window ceramic. Calabazas Creek Research Inc. is currently developing a traveling wave window using compact, numerically optimized, parabolic tapers to match the input diameter of 38mm to the window ceramic diameter of 76mm (Figure 1). The design is projected to handle 100 MW of pulse power with a peak field at the window face of 3.6 MV/m. Cold test of the window has shown the return loss to be better than -25 dB over a 100 MHz bandwidth and to be resonance free (Figure 2). The window is scheduled for high-power testing in July 2003 at the SLAC.

Source

  • Journal Name: Conf.Proc.C030512:1125,2003; Conference: Particle Accelerator Conference (PAC 03) 12-16 May 2003, Portland, Oregon

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13186
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 926194
  • Archival Resource Key: ark:/67531/metadc893695

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 24, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Aug. 1, 2017, 11:51 a.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Neilson, J.; Ives, L. & Tantawi, S. G. Design and Test of a 100MW X Band TE01 Window, article, March 24, 2008; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc893695/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.