Measurement of Time-Dependent CP Asymmetry in $B^0 \rightarrow K^0_s \pi^0 \gamma$ Decays

Work supported in part by US Department of Energy contract DE-AC02-76SF00515

Published in the Physical Review D

Revised--October 15, 2008
BaBar-PUB-08/025
SLAC-PUB-13316
arXiv:0807.3103 [hep-ex]
We measure the time-dependent CP asymmetry in $B^0 \rightarrow K^{\pm}_S \pi^\mp \gamma$ decays for two regions of $K^{\pm}_S \pi^\mp$ invariant mass, $m(K^{\pm}_S \pi^\mp)$, using the final BABAR data set of $467 \times 10^6 \ BB$ pairs collected at the PEP-II e$^+e^-$ collider at SLAC. We find $339 \pm 24 \ B^0 \rightarrow K^{\pm}_S \pi^\mp \gamma$ candidates and measure $S_{K^{\pm}_S \pi^\mp} = -0.03 \pm 0.29 \pm 0.03$ and $C_{K^{\pm}_S \pi^\mp} = -0.14 \pm 0.16 \pm 0.03$. In the range $1.1 < m(K^{\pm}_S \pi^\mp) < 1.8 \text{ GeV}/c^2$ we find $133 \pm 20 \ B^0 \rightarrow K^{\pm}_S \pi^\mp \gamma$ candidates and measure $S_{K^{\pm}_S \pi^\mp} = -0.78 \pm 0.59 \pm 0.09$ and $C_{K^{\pm}_S \pi^\mp} = -0.36 \pm 0.33 \pm 0.04$. The uncertainties are statistical and systematic, respectively.

PACS numbers: 11.30.Er, 13.20.Hc, 14.40.Nd
The radiative decay $b \to s \gamma$ serves as a probe of physics beyond the standard model (SM). In the SM it proceeds at leading order through a loop diagram, making it sensitive to possible virtual contributions from as yet undiscovered particles. Because of parity violation in the weak interaction, the photon in $b \to s \gamma$ is predominantly left-handed, while it is right-handed in the charge-conjugate decay. The photon polarization can be determined indirectly through a measurement of time-dependent CP asymmetry in certain neutral decay channels. A non-zero asymmetry S due to interference between B^0 mixing and decay diagrams is only present if both photon helicities contribute to both B^0 and \bar{B}^0 decays [1]. S is expected to be approximately -0.02 in the SM [1, 2], though hadronic corrections might permit it to be as large as ± 0.1 [3]. Several new physics scenarios yield large values of the asymmetry; these include left-right symmetric models [1, 4] and supersymmetric models [5]. Because the SM asymmetry is small, any significant evidence of a large asymmetry would point to a source beyond the SM.

We present an updated measurement of the time-dependent CP asymmetry in $B^0 \to K^0_s \pi^0 \gamma$ based on the final Belle data set of 467 \times 10^6 $\Upsilon(4S) \to BB$ decays collected at the PEP-II asymmetric-energy e^+e^- storage rings at SLAC. Previous measurements have been performed by Babar [6] and Belle [7]. Changes since Babar’s last published result include doubling the data set, improved track reconstruction, better removal of background photons from n^0 and η decays, better rejection of $B^+ \to K^+\pi^0\gamma$ backgrounds [8], and an improved evaluation of the systematic uncertainties from non-signal B decays. At leading order in the SM, the CP asymmetries of this mode do not depend on $m(K^0_s\pi^0)$ [9]. However, since the aforementioned hadronic corrections [3] or new physics could introduce this dependence, we split the data into two parts: the K^+ region with 0.8 < $m(K^0_s\pi^0)$ < 1.0 GeV/c2 and the non-K^+ region with 1.1 < $m(K^0_s\pi^0)$ < 1.8 GeV/c2.

Time-dependent CP asymmetries are determined using the difference of B^0 meson proper decay times $\Delta t = t_{\text{sig}} - t_{\text{tag}}$, where t_{sig} is the proper decay time of the signal $B^0 \to K^0_s\pi^0\gamma$ candidate (B_{sig}) and t_{tag} is that of the other B (B_{tag}), which is partially reconstructed and flavor-tagged based on its daughter tracks. The Δt distribution for B_{sig} decaying to a CP eigenstate is

$$P_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} [1 \pm S \sin(\Delta m \Delta t) \mp C \cos(\Delta m \Delta t)],$$

where the upper and lower signs correspond to B_{tag} having flavor B^0 and \bar{B}^0 respectively, τ is the B^0 lifetime, and Δm is the $B^0-\bar{B}^0$ mixing frequency. The C coefficient corresponds to the direct CP asymmetry in decay, expected to be smaller than 1% in the SM [10].

We evaluate our selection criteria with a detailed Monte Carlo (MC) simulation of the BABAR detector [11], using the EVTGEN generator [12] and the GEANT4 package [13]. We require photon candidates to have energy greater than 30 MeV and the expected lateral shower shapes in the electromagnetic calorimeter (EMC). The primary photon from the B decay must be isolated by more than 25 cm from other charged and neutral clusters in the EMC. Primary-photon candidates that make a π^0 or η candidate when combined with another photon in the event are discarded based on a likelihood formed from the diphoton mass and the energy of the second photon. We select $K^0_s \to \pi^+\pi^-$ candidates from oppositely-charged tracks for which the probability of a geometrical vertex fit is greater than 0.1%, the $\pi^+\pi^-$ invariant mass is between 487 and 508 MeV/c2, and the reconstructed decay length is greater than 5 times its uncertainty. We select $\pi^0 \to \gamma\gamma$ candidates with invariant mass between 115 and 155 MeV/c2 and energy greater than 590 MeV in the laboratory frame. For candidates in the K^* region we require $|\cos \theta_{K^*}| < 0.9$, where θ_{K^*} is the angle between the K^0_s and primary photon direction in the K^* rest frame.

To identify signal decays we use the energy-substituted mass $m_{\text{ES}} = \sqrt{(s/2\cdot c^2 + p_0 \cdot p_B)^2 / \bar{E}_0^2 - |p_B|^2 / c^2}$ and the energy difference $\Delta E = E^*_B - \sqrt{s}/2$, where $(E_0/c, p_0)$ and $(E_B/c, p_B)$ are the four-momenta of the initial e^+e^- system and the B candidate, respectively, \sqrt{s} is the center-of-mass (CM) energy, and the asterisk denotes the CM frame. The distributions of signal events show a peak in these variables. We require 5.2 < m_{ES} < 5.3 GeV/c2 and $|\Delta E|$ < 250 MeV. To reduce $B^+ \to K^+\pi^+\gamma$ background, we reconstruct $B^+ \to K^{++}(K^0_s\pi^+)\gamma$ candidates subject to the same requirements as B^0 candidates, and veto events for which $m_{\text{ES}}(B^+) > 5.27$ GeV/c2 and 0.8 < $m(K^0_s\pi^+)$ < 1.0 GeV/c2. To discriminate B decays from continuum $e^+e^- \to q\bar{q}$ ($q = u, d, s, c$ background), we require $|\cos \theta_B^*| < 0.9$, where θ_B^* is the CM angle between the B candidate and the e^- beam direction. We require the ratio of event-shape moments L_2/L_0 to be less than 0.55, where $L_i = \sum_j |p_j|^2 |\cos \theta_j^i|^i$, p_j is the CM momentum of each particle j not used to reconstruct the B candidate, and θ_j^i is the CM angle between p_j^i and the thrust axis of the reconstructed B candidate. After all selection criteria have been applied we find 10587 candidate events, 16% of which have more than one signal B^0 candidate. In these cases we select the one with π^0 mass closest to its nominal value [14], and if there is still an
ambiguity, we select the one with the K^0 mass closest to its nominal value. We find an overall selection efficiency of 16%.

For each reconstructed signal candidate we use the remaining tracks in the event to determine the decay vertex position and flavor of B_{tag}. The latter is determined by a neural network based on kinematic and particle identification information, the performance of which is evaluated using a sample of fully-reconstructed, self-tagging hadronic B^0 decays (B_{fake} sample) [15].

We determine the proper time difference between B_{sig} and B_{tag} from the spatial separation between their decay vertices in the same way as our previous analysis and a similar BABAR study of $B^0 \rightarrow K^0_S \pi^0$ [16]. Because both the transverse flight length of the B^0 mesons and the transverse size of the interaction region are small compared to the B^0 flight length along the boost direction, we are able to determine a decay vertex from the intersection of the K^0_S trajectory with the interaction region. We further improve the Δt resolution by 11% over what is obtained using information from the interaction region alone by refitting the $\Upsilon(4S) \rightarrow B^0 B^0$ system with the constraint that the average sum of decay times ($t_{\text{sig}}+t_{\text{tag}}$) be equal to twice the B lifetime with an uncertainty of $\sqrt{2} \tau_B$. Using MC simulation data we verify that this procedure gives an unbiased estimate of Δt. We define events as having good Δt quality if each pion daughter of the K^0_S creates at least 2 hits in the silicon vertex tracker (SVT), and if the Δt uncertainty $\sigma_{\Delta t} < 2.5$ ps and $|\Delta t| < 20$ ps. About 70% of signal and background events pass these requirements. We split our data set and fitting procedure based on the Δt quality such that signal-tagged events with poor Δt information do not contribute to the measurement of S, but do contribute to the measurement of C, which can be determined solely through tagging.

We extract signal yields and CP asymmetries using an unbinned maximum likelihood fit to m_{ES}, ΔE, L_2/L_0, tag flavor, Δt, $\sigma_{\Delta t}$, and, in the $K^* \rightarrow K_0^0 \pi^0$ region, obtained with the sPlot candidate sample of 3884 events we find 339 ± 24 (stat) signal events, $S_{K^* \rightarrow K^0_S \pi^0} = -0.03 \pm 0.29$ (stat) ± 0.03 (syst) and $C_{K^* \rightarrow K^0_S \pi^0} = -0.14 \pm 0.16$ (stat) ± 0.03 (syst). We also find 19 ± 27 (stat) $B\bar{B}$ background events. In the range $1.1 < m(K_0^0 \pi^0) < 1.8$ GeV/c^2 with 6703 events we measure 133 ± 20 (stat) signal events, $S_{K_0^0 \pi^0 \gamma} = -0.78 \pm 0.59$ (stat) ± 0.09 (syst) and $C_{K_0^0 \pi^0 \gamma} = -0.36 \pm 0.33$ (stat) ± 0.04 (syst). We find 167 ± 49 (stat) $B\bar{B}$ background events in this sample. The linear correlation coefficient between $S_{K^* \rightarrow K^0_S \pi^0}$ and $C_{K^* \rightarrow K^0_S \pi^0}$ is $+0.050$, while for $S_{K^0_S \pi^0 \gamma}$ and $C_{K^0_S \pi^0 \gamma}$ it is $+0.015$. Figure 1 shows signal-enhanced distributions for m_{ES} and ΔE created by cutting on the likelihood of the unploted fit variables.

We perform a cross-check because of the discrepancy between the projection of the fit model and the data in the non-K^* region at low m_{ES}. A fit of the data sample with $m_{ES} > 5.22$ GeV/c^2 shows that the observed changes in S and C are consistent with statistical fluctuations, so the signal is not significantly affected. Additionally, we verified that the slope of the m_{ES} background shape is not correlated with the other fit variables. MC simulations of common $B\bar{B}$ backgrounds, including the final states $K_0^0 \pi \pi \gamma$ and $K_0^0 \pi \pi \pi$, do not show any rising structure at low m_{ES}.

Figure 2 shows the background-subtracted distributions of Δt in the K^* region, obtained with the sPlot event weighting technique [19]. We show an sPlot of the $m(K_0^0 \pi^0)$ spectrum in Fig. 3.

Using an ensemble of simulated experiments generated from the fitted likelihood function we find no bias in the K^* region and a spread in S and C consistent with the statistical uncertainties. In the non-K^* region we find a bias of -0.06 ± 0.03 on S and a spread in C larger than the
statistical uncertainty reported by the fit. These effects are due to a measurement that is close to the physical boundary of $S^2 + C^2 < 1$, and they disappear if we generate the ensemble with $S_{K_S^0 \pi^0 \gamma} = C_{K_S^0 \pi^0 \gamma} = 0$. The bias on $S_{K_S^0 \pi^0 \gamma}$ is evaluated with several ensembles of simulated events in which the generated $S_{K_S^0 \pi^0 \gamma}$ is varied. For the statistical uncertainty on C we take the ensemble’s root-mean-square width of 0.33 instead of the 0.29 uncertainty determined by the fit to data.

Systematic uncertainties associated with our knowledge of the beam spot position and possible SVT misalignment are determined by varying the beam spot and SVT alignment parameters in MC. We bound the effects of uncertainties in the Δt resolution function due to the vertexing method with a study from BABAR’s $B^0 \rightarrow K^0_S \pi^0 \pi^0$ analysis [20]. Resolution function differences between data and MC in control samples of $B^0 \rightarrow J/\psi K^0_S$ decays, in which the J/ψ vertex information is ignored, lead to differences in S and C that we take as systematic uncertainties. Uncertainties from doubly-Cabibbo-suppressed (DCS) decays of the B_{tag} are included as in Ref. [15].

Uncertainties due to the vertex reconstruction procedure and possible correlations among the observables with an ensemble of simulated experiments created by generating background events from the PDFs and embedding signal events from the full MC simulation. No significant bias is observed in the K^* region, and we bound uncertainties by the precision with which the potential bias is measured. In the non-K^* region, no bias is observed in the signal MC.

Uncertainties due to limited knowledge of the fixed parameters in the fit are evaluated by varying them within their uncertainties. We evaluate differences between data and MC in the signal shape by fixing the background parameters to those determined in the fit to data and floating the signal parameters separately for each observable.

We evaluate the effect of $S_{B\bar{B}}^{\text{bkg}}$ and $C_{B\bar{B}}^{\text{bkg}}$ by varying them over a range determined by the composition of the $B\bar{B}$ background samples and CP asymmetry measurements in the PDG listings. The systematic uncertainties are summarized in Table I.

In summary, we have measured the time-dependent CP asymmetry in $B^0 \rightarrow K^0_S \pi^0 \gamma$ decays using the full BABAR data set recorded at the $Y(4S)$ resonance. We find

$$S_{K^* \gamma} = -0.03 \pm 0.29 \text{ (stat)} \pm 0.03 \text{ (syst)},$$

$$C_{K^* \gamma} = -0.14 \pm 0.16 \text{ (stat)} \pm 0.03 \text{ (syst)},$$

$$S_{K_S^0 \pi^0 \gamma} = -0.78 \pm 0.59 \text{ (stat)} \pm 0.09 \text{ (syst)},$$

FIG. 1: Signal-enhanced distributions for m_{ES} (top) and ΔE (bottom) for the K^* region (left) and the non-K^* region (right). We show the fit result (solid line) and PDFs for signal (long dashed), continuum (short dashed), and $B\bar{B}$ (dotted).
TABLE I: Summary of systematic uncertainties.

<table>
<thead>
<tr>
<th>Source</th>
<th>K^+ Region</th>
<th>non-K^+ Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔS</td>
<td>ΔC</td>
</tr>
<tr>
<td>Beamspot</td>
<td>0.007</td>
<td>0.002</td>
</tr>
<tr>
<td>SVT Alignment</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Resolution Function</td>
<td>0.011</td>
<td>0.018</td>
</tr>
<tr>
<td>Bias Uncertainty</td>
<td>0.015</td>
<td>0.009</td>
</tr>
<tr>
<td>PDF Uncertainty</td>
<td>0.015</td>
<td>0.013</td>
</tr>
<tr>
<td>$C_{\mu\mu}^{bkg}$</td>
<td>0.008</td>
<td>0.002</td>
</tr>
<tr>
<td>$C_{\nu\nu}^{bkg}$</td>
<td>0.001</td>
<td>0.015</td>
</tr>
<tr>
<td>Total</td>
<td>0.028</td>
<td>0.030</td>
</tr>
</tbody>
</table>

$C_{K^0_S\pi^0\gamma} = -0.36 \pm 0.33$ (stat) ± 0.04 (syst).

The measurement in each $m(K^0_S\pi^0)$ region is consistent within uncertainties with the predictions of the standard model.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

[8] Unless explicitly stated, charge conjugate decay modes are included implicitly throughout this paper.