Tantalum Shear Modulus from Homogenization of Single Crystal Data

PDF Version Also Available for Download.

Description

Elastic constants for tantalum single crystals have been calculated by Orlikowski, et al. [1] for a broad range of temperatures and pressures. These moduli can be utilized directly in continuum crystal simulations or dislocation dynamics calculations where the individual grains of the polycrystalline material are explicitly represented. For simulations on a larger size scale, the volume of material represented by the quadrature points of the simulation codes includes many grains, and average moduli are needed. Analytic bounding and averaging schemes exist, but since these do not account for nonuniform stress and strain within the interacting grains, the upper and lower ... continued below

Physical Description

12 p. (0.2 MB)

Creation Information

Becker, R September 14, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Elastic constants for tantalum single crystals have been calculated by Orlikowski, et al. [1] for a broad range of temperatures and pressures. These moduli can be utilized directly in continuum crystal simulations or dislocation dynamics calculations where the individual grains of the polycrystalline material are explicitly represented. For simulations on a larger size scale, the volume of material represented by the quadrature points of the simulation codes includes many grains, and average moduli are needed. Analytic bounding and averaging schemes exist, but since these do not account for nonuniform stress and strain within the interacting grains, the upper and lower bounds tend to diverge as the crystal anisotropy increases. Local deformation and stress equilibrium accommodate the anisotropic response of the individual grains. One method of including grain interactions in shear modulus averaging calculations is through a highly-descretized finite element model of a polycrystal volume. This virtual test sample (VTS) can be probed to determine the average response of the polycrystal. The desire to obtain isotropic moduli imposes attributes on the VTS. The grains should be equiax and the crystal orientation distribution function should be random. For these simulations, a cube, 300 {micro}m on a side, was discretized with 1 million finite elements on a regular rectangular mesh. The mesh was seeded with 1000 grains generated using a constrained-random placement algorithm, Figure 1. Since the orientations were simply painted in the mesh, the grain boundaries are irregular. The orientation distribution function is shown as pole figure in Figure 2. It has the appearance of being random. Analysis of the simulation results will be used to determine if the randomness of the texture and number of grains are adequate.

Physical Description

12 p. (0.2 MB)

Notes

PDF-file: 12 pages; size: 0.2 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-234680
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/925669 | External Link
  • Office of Scientific & Technical Information Report Number: 925669
  • Archival Resource Key: ark:/67531/metadc893453

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 14, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • April 13, 2017, 4:12 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Becker, R. Tantalum Shear Modulus from Homogenization of Single Crystal Data, report, September 14, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc893453/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.