The Nature of the Dissociation Sites of Hydrogen Molecules on Ru(001)

PDF Version Also Available for Download.

Description

Scanning tunneling microscopy (STM) was used to study the dissociative adsorption of H{sub 2} on Ru(001) near saturation coverage, when the number of residual hydrogen vacancies (i.e., unoccupied Ru sites) is small. We found that H{sub 2} dissociation takes place only on Ru sites where the metal atom is not bound to any H atom. Such active sites are formed when at least 3 H-vacancies aggregate by thermal diffusion. Sites formed by single H-vacancies or pairs of adjoining vacancies were found to be unreactive toward H{sub 2}. As a similar phenomenon was found previously on Pd(111), the present results indicate ... continued below

Physical Description

23

Creation Information

Salmeron, Miquel; Rose, Franck; Tartakhanov, Mous; Fomin, Evgeni & Salmeron, Miquel March 12, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Scanning tunneling microscopy (STM) was used to study the dissociative adsorption of H{sub 2} on Ru(001) near saturation coverage, when the number of residual hydrogen vacancies (i.e., unoccupied Ru sites) is small. We found that H{sub 2} dissociation takes place only on Ru sites where the metal atom is not bound to any H atom. Such active sites are formed when at least 3 H-vacancies aggregate by thermal diffusion. Sites formed by single H-vacancies or pairs of adjoining vacancies were found to be unreactive toward H{sub 2}. As a similar phenomenon was found previously on Pd(111), the present results indicate that the active sites for H2 dissociation share a common characteristic among catalytically active transition metals.

Physical Description

23

Source

  • Journal Name: Journal of Physical Chemistry C; Journal Volume: 111

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-193E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 927874
  • Archival Resource Key: ark:/67531/metadc893448

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 12, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 2, 2017, 4:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Salmeron, Miquel; Rose, Franck; Tartakhanov, Mous; Fomin, Evgeni & Salmeron, Miquel. The Nature of the Dissociation Sites of Hydrogen Molecules on Ru(001), article, March 12, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc893448/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.