Model-independent measurement of the W boson helicity in top quark decays at D0

We present the first model-independent measurement of the helicity of W bosons produced in top quark decays, based on a 1 fb$^{-1}$ sample of candidate $t\bar{t}$ events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider. We reconstruct the angle θ^* between the momenta of the down-type fermion and the top quark in the W boson rest frame for each top quark decay. A fit of the resulting $\cos \theta^*$ distribution finds that the fraction of longitudinal W bosons $f_0 = 0.390 \pm 0.177$ (stat.) ± 0.104 (syst.) and the fraction of right-handed W bosons $f_+ = 0.171 \pm 0.102$ (stat.) ± 0.058 (syst.), which is consistent at the 27% C.L. with the standard model.

PACS numbers: 14.65.Ha, 14.70.Fm, 12.15.Ji, 12.38.Qk, 13.38.Be, 13.88.+e

The top quark is by far the heaviest of the known fermions and is the only one that has a Yukawa coupling to the Higgs boson of order unity in the standard model (SM). In the SM, the top quark decays via the $V-A$ charged-current interac-
tion, almost always to a W boson and a b quark. We search for evidence of new physics in the $t \to Wb$ decay by measuring the helicity of the W boson. A different Lorentz structure of the $t \to Wb$ interaction would alter the fractions of W bosons produced in each polarization state from the SM values of 0.697 ± 0.012 [1] and 3.6×10^{-4} [2] for the longitudinal fraction f_0 and positive fraction f_+, respectively, at the world average top quark mass m_t of 172.5 ± 2.3 GeV [3].

In this Letter, we report a simultaneous measurement of f_0 and f_+ (the negative helicity fraction f_- is then fixed by the requirement that $f_- = f_0 + f_+ = 1$). This is the first such model-independent W boson helicity measurement reported. A measurement of the W boson helicity fractions that differs significantly from the SM values would be an unambiguous indication of new physics. Examples of models that predict deviations from the SM helicity fractions are presented in Refs. [4], [5], and [6]. In addition, the model-independent W boson helicity measurement can be combined with measurements of single top production cross sections to fully specify the tbW vertex [7].

Measurements of the $b \to s\gamma$ decay rate assume the absence of gluonic penguin contributions and indirectly limit the $V + A$ contribution in top quark decays to less than a few percent [8]. Direct measurements of the longitudinal fraction (in which f_+ is set to zero) found $f_0 = 0.85^{+0.36}_{-0.23}$ [9] and $f_0 = 0.56 \pm 0.31$ [10]. Direct measurements of f_+ (in which f_0 is set to 0.7) have found $f_+ = -0.02 \pm 0.08$ [11] and $f_+ = 0.06 \pm 0.10$ [12]. The analysis presented in this Letter improves upon that reported in Ref. [12] by using a larger data set, employing enhanced event selection techniques, making use of hadronic W boson decays, and introducing the model-independent analysis.

The angular distribution of the down-type decay products of the W boson (charged lepton or d, s quark) in the rest frame of the W boson can be described by introducing the decay angle θ^* of the down-type fermion with respect to the top quark direction. The dependence of the distribution of $\cos \theta^*$ on the W boson helicity fractions,

$$\omega(c) \propto 2(1-c^2)f_0 + (1-c)^2 f_- + (1+c)^2 f_+, \quad (1)$$

where $c = \cos \theta^*$, forms the basis for our measurement. We proceed by selecting a data sample enriched in $tt\ell$ events, reconstructing the four vectors of the two top quarks and their decay products, and then calculating $\cos \theta^*$. The down-type fermions in leptonic W boson decays are the charged leptons. For hadronic W boson decays, we do not know which of the jets from the W boson arose from a down-type quark, so we choose a jet at random to calculate $\cos \theta^*$. Since this introduces a sign ambiguity into the calculation, we consider only $| \cos \theta^*|$ for hadronic W boson decays. The $| \cos \theta^*|$ variable does not discriminate between left- and right-handed W bosons, but adds information for determining the fraction of longitudinal W bosons. These distributions in $\cos \theta^*$ are compared with templates for different W boson helicity models, suitably corrected for background and reconstruction effects, using a binned maximum likelihood method.

This measurement uses a data sample recorded with the D0 experiment that corresponds to an integrated luminosity of about 1 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The D0 detector is described elsewhere [13]. Most of the events we use were selected by the trigger system based on the presence of energetic leptons or jets. The data sample consists of $tt\ell$ candidate events from the lepton plus jets (ℓ+jets) decay channel $tt \to W^+W^-bb \to \ell\nu qq' bb$ and the dilepton channel $tt \to W^+W^-\ell\nu' bb$, where ℓ and ℓ' are electrons or muons. The ℓ+jets final state is characterized by one charged lepton, at least four jets, and large missing transverse energy (E_T). The dilepton final state is characterized by two charged leptons of opposite sign, at least two jets, and large E_T. In both final states, at least two of the jets are b jets.

The ℓ+jets event selection [14] requires an isolated lepton (e or μ) with transverse momentum $p_T > 20$ GeV, no other lepton with $p_T > 15$ GeV in the event, $E_T > 20$ GeV, and at least four jets. In the dilepton channel, events are required to have two leptons with opposite charge and $p_T > 15$ GeV and two or more jets. Electrons are required to have pseudorapidity $|\eta| < 1.1$ in the ℓ+jets channel and $|\eta| < 1.1$ or $1.5 < |\eta| < 2.5$ in the dilepton channel, and are identified by their energy deposition and isolation in the calorimeter, their transverse and longitudinal shower shapes, and information from the tracking system. Also, a discriminant combining the above information must be consistent with the expectation for a high-p_T isolated electron [14]. Muons are identified using information from the muon and tracking systems and must satisfy isolation requirements based on the energies of calorimeter clusters and the momenta of tracks around the muon. They are required to have $|\eta| < 2.0$ and to be isolated from jets. Jets are reconstructed using a cone algorithm with cone radius 0.5 [16] and are required to have rapidity $|y| < 2.5$ and $p_T > 20$ GeV. The E_T is calculated from the vector sum of calorimeter cell energies, corrected to account for the response of the calorimeter to jets and electrons and also for the momenta of identified muons.

We simulate $tt\ell$ signal events with $m_t = 172.5$ GeV for different values of f_+ with the ALPGEN Monte Carlo (MC) program [17] for the parton-level process (leading order) and PYTHIA [18] for gluon radiation and subsequent hadronization. We generate samples corresponding to each of the three W boson helicity configurations by reweighting the generated $\cos \theta^*$ distributions. Backgrounds in the ℓ+jets channel arise predominantly from W+jets production and multijet production where one of the jets is misidentified as a lepton and spurious E_T appears due to mismeasurement of the transverse energy in the event. In the dilepton channel, backgrounds arise from processes such as WW+jets or Z+jets. The MC samples used to model background events with real leptons are also generated using ALPGEN and PYTHIA. Both the signal and background MC samples are passed through a detailed GEANT3 [19] simulation of the detector response and reconstructed with the same algorithms used for data. In the ℓ+jets channel we estimate the number N_{bj3} of multijet background events directly from data, using the technique described in
Ref. [14]. We calculate N_{mj} for each bin in the $\cos \theta^*$ distribution from the data sample to obtain the multijet $\cos \theta^*$ templates.

To increase the signal purity following the above selection, a multivariate likelihood discriminant D [14] with values in the range 0 to 1 is calculated using input variables which exploit differences in kinematics and jet flavor. The kinematic variables considered are: H_T (defined as the scalar sum of the jet p_T values), centrality C (the ratio of H_T to the sum of the jet energies), k_T^{min} (the distance in $\eta - \phi$ space between the closest pair of jets multiplied by the E_T of the lowest-E_T jet in the pair and divided by the E_T of the W boson), the sum of all jet and charged lepton energies h, the minimum dijet mass of the jet pairs $m_{jj\text{min}}$, aplanarity A, sphericity S [20], E_T, and the dilepton invariant mass $m_{\ell\ell}$. In the dimuon channel, the χ^2 of a kinematic fit to the $Z \rightarrow \mu \mu$ hypothesis χ^2_Z [21] is used instead of E_T.

We utilize the fact that jets in background events arise mostly from light quarks or gluons while two of the jets in $t\bar{t}$ events arise from b quarks by forming a neural network discriminant between b and light jets [22]. Inputs to this neural network include track impact parameters and the properties of any secondary decay vertices reconstructed within the jet cone, and the output is a value NN_b that tends towards one for b jets and towards zero for light jets. In the $\ell+j$ets channels we use the average of the two largest NN_b values to form a continuous variable $\langle NN_b \rangle$ whose value tends to be large for $t\bar{t}$ events and small for backgrounds, while in the dilepton channels the NN_b values for the two leading jets (NN_{b1}, NN_{b2}) are taken as separate variables. Including NN_b as a continuous variable in the discriminant results in similar background discrimination but better efficiency than applying a simple cut on NN_b.

The discriminant is built separately for each of the five final states considered, using the method described in Refs. [14, 23]. Background events tend to have D values near 0, while $t\bar{t}$ events tend to have values near 1. We consider all possible combinations of the above variables for use in the discriminant, and all possible requirements on the D value, and choose the variables and D criterion that give the best expected precision for the W boson helicity. The variables chosen and the requirement placed on D for each channel are given in Table I. An example of the distributions of signal, background and data events in D is shown in Fig. 1.

We then perform a binned Poisson maximum likelihood fit to compare the observed distribution of events in D to the sum of the distributions expected from $t\bar{t}$ and background events. In the $\ell+j$ets channels, N_{mj} is constrained to the expected value within the known uncertainty, while in the dilepton channels the ratio of the various background sources is fixed to the expectation from the cross sections times efficiency of the kinematic selection. The likelihood is then maximized with respect to the numbers of $t\bar{t}$ and background events, which are multiplied by the efficiency for the D selection to determine the composition of the sample used for measuring the W boson helicity fractions. Table I lists the composition of each sample as well as the number of observed events in the data.

The top quark and W boson four-momenta in the selected $\ell+j$ets events are reconstructed using a kinematic fit which is subject to the following constraints: two jets must form the invariant mass of the W boson [24], the lepton and the E_T together with the neutrino p_T component must form the invariant mass of the W boson, and the masses of the two reconstructed top quarks must be 172.5 GeV. The four highest-p_T jets in each event are used in the fit, and among the twelve possible jet combinations, the solution with the maximal probability, considering both the χ^2 from the kinematic fit and the NN_b values of the four jets, is chosen. The $\cos \theta^*$ distributions for leptonic and hadronic W boson decays obtained in the $\ell+j$ets data after the full selection are shown in Fig. 2(a) and (b).

Since the two neutrinos in the dilepton final state are not detected, the system is kinematically unconstrained. However, if a top quark mass is assumed, the kinematics can be solved algebraically with a four-fold ambiguity in addition to the two-fold ambiguity in pairing jets with leptons. For each of the two leading jets, we calculate the value of $\cos \theta^*$ resulting from each solution with each of the two leptons associated with the jet. To explore the phase space consistent with the measured jet and lepton energies, we fluctuate them according to their resolution many times, and repeat the above procedure for each fluctuation. The average of these values is taken as $\cos \theta^*$ for that jet. The $\cos \theta^*$ distribution obtained in dilepton data is shown in Fig. 2(c).

To extract f_0 and f_+, we compute the binned Poisson likelihood $L(f_0, f_+)$ for the data to be consistent with the sum of signal and background templates at any given value for these fractions. The background normalization is constrained to be consistent within uncertainties with the expected value by a Gaussian term in the likelihood.

Systematic uncertainties are evaluated in ensemble tests by varying the parameters that can affect the shapes of the $\cos \theta^*$ distributions or the relative contribution from signal and background sources. Ensembles are formed by drawing events from a model with the parameter under study varied. These
TABLE I: Summary of the multivariate selection and number of selected events for each of the $t\bar{t}$ final states used in this analysis. The uncertainties are statistical only, except for the background estimates in the ee and $\mu\mu$ channels, in which systematic uncertainties arising from imperfections in the MC model of the data are included.

<table>
<thead>
<tr>
<th>Variables used in discriminant D</th>
<th>e+jets</th>
<th>μ+jets</th>
<th>$e\mu$</th>
<th>ee</th>
<th>$\mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, S, A, HT, h, $k_{T\text{min}}$, $\langle NN_h \rangle$, $k_{T\text{min}}^2$, NN_h, NN_h, $m_{jj\text{min}}$, A, S, h, $m_{jj\text{min}}$, A, S, h, $m_{jj\text{min}}$</td>
<td>C, S, A, HT, h, $k_{T\text{min}}$, $\langle NN_h \rangle$, $k_{T\text{min}}^2$, NN_h, NN_h, $m_{jj\text{min}}$, A, S, h, $m_{jj\text{min}}$, A, S, h, $m_{jj\text{min}}$, A, S, h, $m_{jj\text{min}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Signal purity before D selection: 0.44 ± 0.04, 0.67 ± 0.11, 0.014 ± 0.004, 0.024 ± 0.006.
- Requirement on D: >0.80, >0.40, >0.08, >0.986, >0.990.
- Background after D selection: 21.1 ± 4.5, 33.0 ± 5.2, 9.9 ± 2.5, 2.2 ± 0.9, 4.8 ± 3.4.
- Data events after D selection: 121, 167, 45, 15, 15.

![Fig. 2](image)

FIG. 2: Comparison of the $\cos \theta^*$ distribution in data (points with error bars) and the global best-fit model (solid open histograms) for (a) leptonic W boson decays in e+jets events, (b) hadronic W boson decays in μ+jets events, and (c) dilepton events. The dashed open histograms show the SM expectation, and the shaded histograms represent the background contribution.

The measured values of f_0 and f_+ are:

- $f_0 = 0.390\pm0.177$ (stat.) ±0.104 (syst.)
- $f_+ = 0.171\pm0.102$ (stat.) ±0.058 (syst.),

with a correlation coefficient of -0.87. The inclusion of the

TABLE II: Summary of the major systematic uncertainties on f_0 and f_+ in the model-independent fit.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (f_0)</th>
<th>Uncertainty (f_+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top mass</td>
<td>0.015</td>
<td>0.014</td>
</tr>
<tr>
<td>Jet reconstruction eff.</td>
<td>0.029</td>
<td>0.013</td>
</tr>
<tr>
<td>Jet energy calibration</td>
<td>0.016</td>
<td>0.021</td>
</tr>
<tr>
<td>b fragmentation</td>
<td>0.019</td>
<td>0.007</td>
</tr>
<tr>
<td>$t\bar{t}$ model</td>
<td>0.059</td>
<td>0.032</td>
</tr>
<tr>
<td>Background model</td>
<td>0.053</td>
<td>0.023</td>
</tr>
<tr>
<td>Template statistics</td>
<td>0.053</td>
<td>0.031</td>
</tr>
<tr>
<td>Total</td>
<td>0.104</td>
<td>0.058</td>
</tr>
</tbody>
</table>
proves the uncertainties on physically allowed region where statistical and systematic uncertainties in the measurement. 27% chance of observing a larger discrepancy given the statistical and systematic uncertainties in the measurement.

FIG. 3: Result of the model-independent W boson helicity fit. The ellipses are the 68% and 95% C.L. contours, the triangle borders the physically allowed region where f_0 and f_+ sum to one or less, and the star denotes the SM values.

$|\cos \theta^*|$ measurement from hadronic W boson decays improves the uncertainties on f_0 and f_+ by about 20% relative to those obtained using only the leptonic decays. The 68%, and 95% C.L. contours from the fit, including systematic uncertainties, are shown in Fig. 3. The data indicate fewer longitudinal and more right-handed W bosons than the SM predicts, but the difference is not statistically significant as there is a 27% chance of observing a larger discrepancy given the statistical and systematic uncertainties in the measurement.

If we fix f_0 to the SM value, we find

$$f_0 = 0.653 \pm 0.086 \text{ (stat.)} \pm 0.070 \text{ (syst.)},$$

and if f_0 is fixed to the SM value we find

$$f_+ = 0.018 \pm 0.048 \text{ (stat.)} \pm 0.047 \text{ (syst.)}.$$

The above are directly comparable to previous measurements. In summary, we have measured the helicity fractions of W bosons in $t\bar{t}$ decays in the $\ell+\text{jets}$ and dilepton channels with a model-independent fit and find $f_0 = 0.390 \pm 0.177 \text{ (stat.)} \pm 0.104 \text{ (syst.)}$ and $f_+ = 0.171 \pm 0.102 \text{ (stat.)} \pm 0.058 \text{ (syst.)}$. This is the first such measurement reported and is consistent at the 27% level with the SM values of $f_0 = 0.697$ and $f_+ = 3.6 \times 10^{-4}$. We have also measured f_0 and f_+ in a model-dependent fit and find that they are consistent with the SM values.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; and the Marie Curie Program.

\[15\] Rapidity y and pseudorapidity η are defined as functions of the polar angle θ with respect to the proton beam and the parameter β as $y(\theta, \beta) \equiv \frac{1}{2} \ln[(1 + \beta \cos \theta)/(1 - \beta \cos \theta)]$ and $\eta(\theta) \equiv y(\theta, 1)$, where β is the ratio of a particle’s momentum to its energy.
\[17\] M. L. Mangano et al., JHEP 07, 001 (2003).