Poroelastic modeling of seismic boundary conditions across afracture

PDF Version Also Available for Download.

Description

A fracture within a porous background is modeled as a thin porous layer with increased compliance and finite permeability. For small layer thickness, a set of boundary conditions can be derived that relate particle velocity and stress across a fracture, induced by incident poroelastic waves. These boundary conditions are given via phenomenological parameters that can be used to examine and characterize the seismic response of a fracture. One of these parameters, here it is called membrane permeability, is shown through several examples to control the scattering amplitude of the slow P waves for very low-permeability fractures, which in turn controls ... continued below

Creation Information

Schoenberg, M.A. & Nakagawa, S. June 29, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A fracture within a porous background is modeled as a thin porous layer with increased compliance and finite permeability. For small layer thickness, a set of boundary conditions can be derived that relate particle velocity and stress across a fracture, induced by incident poroelastic waves. These boundary conditions are given via phenomenological parameters that can be used to examine and characterize the seismic response of a fracture. One of these parameters, here it is called membrane permeability, is shown through several examples to control the scattering amplitude of the slow P waves for very low-permeability fractures, which in turn controls the intrinsic attenuation of the waves.

Source

  • Meeting of the Society Exploration Geophysicists,New Orleans, LA, 1-6 October 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--60862
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 920346
  • Archival Resource Key: ark:/67531/metadc893288

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 29, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 3:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Schoenberg, M.A. & Nakagawa, S. Poroelastic modeling of seismic boundary conditions across afracture, article, June 29, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc893288/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.