CANCELLED EMT and back again: does cellular plasticity fuel neoplastic progression?

PDF Version Also Available for Download.

Description

Epithelial-mesenchymal transition (EMT) is a cellular transdifferentiation program that facilitates organ morphogenesis and tissue remodeling in physiological processes such as embryonic development and wound healing. However, a similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, in which it is associated with disease progression. EMT in cancer epithelial cells often appears to be an incomplete and bi-directional process. Here we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of the Ras-controlled signaling mediators, ERK1, ERK2 and ... continued below

Creation Information

Turley, Eva A.; Veiseh, Mandana; Radisky, Derek C. & Bissell, MinaJ. February 24, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Epithelial-mesenchymal transition (EMT) is a cellular transdifferentiation program that facilitates organ morphogenesis and tissue remodeling in physiological processes such as embryonic development and wound healing. However, a similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, in which it is associated with disease progression. EMT in cancer epithelial cells often appears to be an incomplete and bi-directional process. Here we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of the Ras-controlled signaling mediators, ERK1, ERK2 and PI3-kinase, as microenvironmental responsive regulators of EMT.

Subjects

Source

  • Journal Name: Nature Clinical Practice Oncology; Journal Volume: 5; Related Information: Journal Publication Date: 05/01/2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--62604
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 928784
  • Archival Resource Key: ark:/67531/metadc893247

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 24, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 21, 2017, 3:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Turley, Eva A.; Veiseh, Mandana; Radisky, Derek C. & Bissell, MinaJ. CANCELLED EMT and back again: does cellular plasticity fuel neoplastic progression?, article, February 24, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc893247/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.