Time-Resolved FT-IR Spectroscopy of CO Hydrogenation overSupported Ru Catalyst at 700K

PDF Version Also Available for Download.

Description

Time-resolved FT-IR spectra of carbon monoxide hydrogenation over alumina-supported ruthenium were recorded on the millisecond timescale at 703 K using various H{sub 2} concentrations (1 atm total pressure). Adsorbed carbon monoxide was detected along with gas phase products methane (3016 and 1306 cm{sup -1}), water (sharp bands from 1900 - 1300 cm{sup -1}), and carbon dioxide (2348 cm{sup -1}). No other surface species were detected other than adsorbed carbon monoxide. The rate of formation of methane (2.5 {+-} 0.4 s{sup -1}) coincides with the rate of formation of carbon dioxide (3.4 {+-} 0.6 s{sup -1}), and bands due to water ... continued below

Creation Information

Wasylenko, Walter & Frei, Heinz February 13, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Time-resolved FT-IR spectra of carbon monoxide hydrogenation over alumina-supported ruthenium were recorded on the millisecond timescale at 703 K using various H{sub 2} concentrations (1 atm total pressure). Adsorbed carbon monoxide was detected along with gas phase products methane (3016 and 1306 cm{sup -1}), water (sharp bands from 1900 - 1300 cm{sup -1}), and carbon dioxide (2348 cm{sup -1}). No other surface species were detected other than adsorbed carbon monoxide. The rate of formation of methane (2.5 {+-} 0.4 s{sup -1}) coincides with the rate of formation of carbon dioxide (3.4 {+-} 0.6 s{sup -1}), and bands due to water are observed to grow in over time. These results establish that methane and carbon dioxide originate from the same intermediate. The adsorbed carbon monoxide band is broad and unsymmetrical with a maximum at 2010 cm{sup -1} in spectra observed at 36 ms that shifts over 3000 ms to 1960 cm{sup -1} due to decreasing amounts of adsorbed carbon monoxide. Kinetic analysis of the adsorbed carbon monoxide band reveals that only a portion of the band can be temporally linked to gas phase products that we observe over the first 1000 ms of catalysis. This result suggests that we are observing dispersive kinetics, which is most likely due to heterogeneity of the surface environment.

Source

  • Journal Name: Physical Chemistry Chemical Physics; Journal Volume: 9; Related Information: Journal Publication Date: 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--59626
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 932677
  • Archival Resource Key: ark:/67531/metadc893235

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 13, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 3:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wasylenko, Walter & Frei, Heinz. Time-Resolved FT-IR Spectroscopy of CO Hydrogenation overSupported Ru Catalyst at 700K, article, February 13, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc893235/: accessed June 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.