
1 

Analysis of metabolic pathways and fluxes in a newly discovered 

thermophilic and ethanol-tolerant Geobacillus strain   

 

Yinjie J. Tang1,8, Rajat Sapra2,4, Dominique Joyner1,3 , Terry C. Hazen1,3, Samuel Myers5, David 

Reichmuth4, Harvey Blanch2,5,7, and Jay D. Keasling1,2,5,6,7 

 

 

 

Running title: flux analysis of an ethanol tolerant thermophile  

(1) Virtual Institute for Microbial Stress and Survival 

(2) Joint Bio-Energy Institute, Emeryville, CA 94608 

(3) Ecology Department, Lawrence Berkeley National Lab, Berkeley, 94720,  

(4) Sandia National Laboratories, PO Box 969, Livermore, CA 94551-9951,  

(5) Department of Chemical Engineering, University of California, Berkeley, CA 94720 

(6) Department of Bioengineering, University of California, Berkeley, CA 94720 

(7) Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 

(8) Department of Energy, Environmental and Chemical Engineering, Washington University, St 

Louis, MO63130  

 

 



 

 

Abstract 1 

A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius 2 

M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and is tolerant to 3 

high ethanol concentrations (10% v/v).  We have investigated the central metabolism of this 4 

bacterium using both in vitro enzyme assays and 13C-based flux analysis to provide insights into 5 

the physiological properties of this extremophile and explore its metabolism for bioethanol or 6 

other bioprocess applications. Our findings show that glucose metabolism in G. 7 

thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the 8 

TCA cycle; the Entner-Doudoroff pathway and transhydrogenase activity were not detected. 9 

Anaplerotic reactions (including the glyoxylate shunt, pyruvate carboxylase and 10 

phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not 11 

be accurately determined using amino acid labelling. When growth conditions were switched 12 

from aerobic to micro-aerobic conditions, fluxes (based on a normalized glucose uptake rate of 13 

100 units (gm DCW)-1·hr-1) through the TCA cycle and oxidative pentose phosphate pathway 14 

were reduced from 64±3 to 25±2 and from 30±2 to 19±2, respectively. The carbon flux under 15 

microaerobic growth was directed to ethanol, L-lactate (>99% optical purity), acetate, and 16 

formate.  Under fully anaerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid 17 

fermentation process and exhibited a maximum ethanol yield of 0.38±0.07 mol mol-1 glucose. In 18 

silico flux balance modelling demonstrates that lactate and acetate production from G. 19 

thermoglucosidasius M10EXG reduces the maximum ethanol yield by approximately three 20 

folds, thus indicating that both pathways should be modified to maximize ethanol production.  21 

Key words: C5 sugar, micro-aerobic, TCA cycle, anaplerotic pathway, flux balance model22 



 

 

Introduction 1 

A recently discovered thermophilic ethanologen, Geobacillus thermoglucosidasius 2 

M10EXG (M10EXG), is a facultative anaerobe that has an optimal growth temperature of 60°C 3 

(Fong et al. 2006).  It can ferment a range of C5 and C6 sugars and tolerate ethanol 4 

concentrations of up to 10% (v/v) (Fong et al. 2006), which makes it an ideal microbe for 5 

improved bio-ethanol production. Moreover, Geobacillus species have many other potential 6 

industrial applications for production of various thermostable enzymes, exopolysaccharides and 7 

bacteriocins; they have also been found to metabolize hydrocarbons in high temperature oil 8 

fields (Nazina et al. 2005) as well as degrading herbicides (such as organophosphonates) 9 

(McMullan et al. 2004). However, the genome sequence of this newly discovered Geobacillus 10 

strain is not yet available, and as such there is no functional genomics data. In order to engineer 11 

the metabolic pathways of the bacterium for optimizing ethanol production from C5 and C6 12 

sugars, an understanding of the carbon fluxes and the maximum potential for ethanol production 13 

is required. In this study, we used in vitro enzyme activity assays and a 13C-based isotopomer 14 

flux model to investigate central metabolic pathways of this thermophilic organism as a function 15 

of oxygen availability (Stephanopoulos et al. 1998; Tang et al. 2007a; Tang et al. 2007b; 16 

Wiechert et al. 2001).  To accomplish this, cells were grown in minimal medium containing 17 

either [1-13C] or [2-13C]-labelled glucose as the sole carbon source, and the 13C-labeling patterns 18 

of derivatized, intracellular amino acids were determined using gas chromatography-mass 19 

spectrometry (GC-MS). An isotopomer model was then constructed to simulate all of the atom 20 

transitions in the assumed biochemical network (based on both enzyme activity assay and 21 

metabolic pathways of its closest sequenced species G. kaustophilus (Takami et al. 2004)) and 22 

the label distribution in all central metabolites. We then searched for a set of active intracellular 23 



 

 

metabolic pathways and flux distributions that predicted the inferred isotopomer distribution of 1 

key metabolites resulting from the isotopomer pattern of the derivatized amino acids.  We show 2 

that in the absence of genome information our approach provides an effective way to map the 3 

central pathways of a new fermentative organism (Tang et al. 2007e) and directly observe the 4 

functional output (i.e., metabolic fluxes) of the transcriptome, proteome, and metabolic changes 5 

under different growth conditions (Sauer 2004).  6 

 7 

Materials and Methods 8 

Culture conditions.  M10EXG was obtained from the Bacillus Genetic Stock Center at 9 

the Ohio State University (Cat # W9A44).  A complete minimal medium was used (Fong et al. 10 

2006) for the cell culture under defined conditions. Since singly labeled carbon substrate can 11 

well resolve the Entner-Doudoroff pathway and pentose phosphate pathway, [1-13C] D-glucose 12 

(10 g L-1; >98%; Cambridge Isotope, Andover, MA) was used as the sole carbon source (Fischer 13 

et al. 2004). For anaerobic or micro-aerobic experiments, the cultures were incubated in sealed 14 

glass bottles with septum caps, and the headspace was filled with argon (anaerobic conditions) or 15 

air (micro-aerobic conditions, air liquid volume ratio 1:1). For aerobic cell cultures, cells were 16 

incubated in shake flasks at 200 rpm. All cultures with labeled medium were started with a ~3% 17 

inoculation volume from cells that had been first grown in Tryptic Soy Broth (BD Biosciences, 18 

San Jose, CA) to stationary phase and then sub-cultured into minimal medium with ~3% 19 

inoculation volume to remove the effect of naturally labelled carbon sources from the initial 20 

inocula.  All cultures (aerobic, microaerobic, and anaerobic) were incubated at 60°C with 21 

shaking at 200 rpm.  Total biomass growth was monitored by measuring the optical density at a 22 

wavelength of 600 nm (OD600).  23 



 

 

 Enzyme Assays. Exponentially growing cells were centrifuged and the resulting cell 1 

pellets were resuspended in 1 ml 100 mM Tris-HCl pH 7.4 and lysed by sonication for all 2 

enzyme assays. Total protein concentration for cell lysates was determined using the Bradford 3 

method (Bio-Rad, Hercules, CA) with bovine serum albumin as the standard. All chemicals and 4 

coupling enzymes were purchased from Sigma Chemical (St. Louis, MO). All enzyme assays 5 

were performed at 55°C and monitored spectroscopically at their respective wavelengths. All 6 

enzyme assays were performed as previously reported (McKinlay et al. 2007; Sauer et al. 2004; 7 

Terada et al. 1991; Van der Werf et al. 1997). In brief, an isocitrate lyase assay contained 25 mM 8 

imidazole pH 6.8, 5 mM MgCl2, 1 mM EDTA, 4 mM phenylhydrazine, and 1 mM D-L-9 

isocitrate; the absorbance at 324 nm was used to monitor forming osazone derivatives. The 10 

oxaloacetate decarboxylase assay contained 41 mM triethanolamine-HCl (TEA) pH 8.0, 460 µM 11 

MnCl2, 300 µM β-NADH, 11 units mL-1 of lactate dehydrogenase, and 2.3 mM oxaloacetate; the 12 

absorbance at 340 nm was used to monitor β-NADH oxidation. The α-ketoglutarate 13 

dehydrogenase assay contained 50 mM MOPS pH 7.4, 4 mM MgCl2, 200 µM CaCl2, 6 mM 14 

thiamine pyrophosphate, 6.7 mM β-NAD+, 5.2 mM cysteine-HCl, and 25 mM α-ketoglutarate; 15 

the absorbance at 340 nm was used to monitor the increase in β-NADH. The 16 

phosphoenolpyruvate (PEP) carboxylase assay contained 100 mM Tris-acetate pH 8.5, 2 mM 17 

potassium PEP, 10 mM KHCO3, 10 mM magnesium acetate, and 1.17 M dioxane; the 18 

absorbance at 340 nm was used to monitor β-NADH oxidation. The transhydrogenase assay 19 

contained 50 mM Tris-HCl, pH 7.6, 2 mM MgCl2, 500 µM β-NADH and 1 mM 3-acetylpyridine 20 

adenine dinucleotide (APAD+); the absorbance at 375 nm was used to monitor the loss of 21 

APAD+. The PEP carboxykinase assay contained 25 mM HEPES, pH 7.1, 50 mM KCl, 2 mM 22 

MgCl2, 50 mM NaHCO3, 500 µM dithiothreitol, 20 µM β-NADH, 100 µM ADP-Mg, 5 mM 23 



 

 

glucose, 4 units mL-1 of malate dehydrogenase, 4 units mL-1 of hexokinase and 1 mM PEP; the 1 

absorbance at 340 nm was used to monitor β-NADH oxidation. The malic enzyme assay 2 

contained 67 mM TEA pH 7.4, 3.5 mM malic acid, 333 µM NAD(P)+, and 5 mM MnCl2; the 3 

absorbance at 340 nm was used to monitor NAD(P)H oxidation. The pyruvate carboxylase assay 4 

contained 95 mM TEA pH 8.0, 6.3 mM pyruvate, 0.11% BSA, 26 units mL-1 malate 5 

dehydrogenase, 50 µM acetyl CoA, 240 µM β-NADH, 15 mM KHCO3, and 1 mM ATP; the 6 

absorbance at 340 nm was used to monitor β-NADH oxidation. All activity calculations had the 7 

basal reaction rate subtracts and were normalized for amount of protein added to the assay (Table 8 

1).  9 

 Analytical methods for metabolite concentrations, biomass composition, and 10 

isotopomer labelling. The concentrations of glucose, formate, lactate, acetate, succinate, and 11 

ethanol in the medium were measured using enzyme linked assay kits (r-Biopharm, Darmstadt, 12 

Germany). Biomass constituents (proteinogenic amino acid composition) were measured by the 13 

Molecular Structure Center, University of California, Davis; the fatty acids of M10EXG were 14 

measured by Microbial ID (Newark, DE) (Supplementary Table S1). Most fatty acids were 15 

saturated in M10EXG (a fact that would lead to decreased membrane fluidity and allow cell 16 

growth at high temperatures and high ethanol concentrations (Daron 1970; Sullivan et al. 1979)), 17 

and the 16- and 17-carbon fatty acids (including branched-chain iso- and anteiso-) accounted for 18 

~80% of total fatty acids. The weight fractions of the various macromolecules were assumed to 19 

be same as a typical bacterium: protein (52%), RNA (16%), DNA (3%), lipids (9%), and total 20 

carbohydrate (17%) (Stephanopoulos et al. 1998). The biomass constitute information was used 21 

to give the estimation of range for searching the optimal fluxes to biomass pools. 22 



 

 

The GC-MS protocol for isotopomer measurement has been reported previously (Tang et 1 

al. 2007d).  In brief, protein in cell pellets (from 50 ml culture) was hydrolyzed in 6 M HCl at 2 

100°C for 24 hours.  The resulting amino acid mixture was derivatized in 100 µL tetrahydrofuran 3 

(THF) and 100 µl N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (Sigma-Aldrich, St. 4 

Louis, MO) at 70°C for 1 hour and analyzed using a gas chromatograph (Model 6890, Agilent, 5 

Wilmington, DE) equipped with a DB5 column and a mass spectrometer (Model 5973 Network, 6 

Agilent, Wilmington, Delaware). Two types of positively charged species were used in the 7 

model simulation: unfragmented amino acids, [M-57]+, and fragmented amino acids that have 8 

lost their α carboxyl group, [M-159]+.  The natural abundance of isotopes was corrected using a 9 

published algorithm before using the data for calculating the label distribution (Hellerstein and 10 

Neese 1999).  11 

Assumptions employed in isotopomer modelling.   The development of the isotopomer 12 

model was based on six assumptions. (i) A quasi-steady state is assumed to be achieved using 13 

batch culture as a convenient and less expensive approach (Sauer et al. 1999; Tang et al. 2007b). 14 

This assumption is based on the fact that isotopic patterns of 14 proteinogenic amino acids did 15 

not change (less than 1% difference) during the exponential growth phase (OD600 0.4-0.9). (ii) 16 

The central metabolic network in M10EXG was inferred from the pathways in closely-related 17 

Geobacillus kaustophilus (only sequenced Geobacillus species) and Bacillus subtilis 18 

(Christiansen et al. 2002; Sauer et al. 1997).  (iii) The direction of flux was based on reaction 19 

thermodynamics, as suggested by a previous flux study on Bacillus subtilis (Sauer et al. 1997); 20 

considerations of potential reversibility of each reaction would make the model system highly 21 

underdetermined (Zhao and Shimizu 2003), thus only reactions between PEP and oxaloacetate 22 

were assumed reversible. (iv) Amino acids provide isotopomer information unique to their 23 



 

 

precursors in the central metabolic pathways. To avoid possible inaccuracies resulting from 1 

alternative amino acid biosynthesis routes, seven amino acids were used to determine 13C fluxes 2 

in central metabolism (Supplementary Table S2). These corresponding metabolites and their 3 

amino acid precursors were pyruvate (alanine), acetyl-CoA (leucine), oxaloacetate (aspartic 4 

acid), 2-oxo-glutarate (glutamate), phosphoenolpyruvate & erythrose-4-phosphate 5 

(phenylalanine), and 3-phosphoglycerate (serine and glycine) (Sauer et al. 1997). (v) The 6 

pathways included in the model were the tricarboxylic acid (TCA) cycle, pentose phosphate (PP) 7 

pathway, the Entner-Doudoroff pathway, and anaplerotic reactions. Oxalacetate decarboxylase 8 

and malic enzyme were not included in the model because of no activity was observed from in 9 

vitro enzyme assays (Table 1). (vi) The fluxes PEP��OAA and Pyr��OAA could not be 10 

clearly distinguished via isotopomer labelling; therefore, PEP and pyruvate were treated as a 11 

single metabolite pool and the reactions between PEP/Pyr pool and OAA were assumed 12 

reversible.  13 

Algorithm for 13C based flux calculation. The extra-cellular fluxes (production of 14 

formate, lactate, acetate and ethanol) were measured directly, and fluxes to biomass pools were 15 

calculated based on the biomass composition (Supplementary Table S1). These fluxes were used 16 

as inputs to the isotopomer model and tightly constrained within measurement noise. The 17 

remaining unknown fluxes were determined from isotopomer fractions, to identify the operative 18 

intracellular metabolic reactions as described before (Tang et al. 2007b). In brief, the complete 19 

fluxes were solved using the reaction stoichiometry and atom / isotopomer mapping matrices in 20 

an iterative scheme to obtain the steady-state isotopomer distributions in the intracellular 21 

metabolites pools. To avoid getting trapped in a local minimum, the model applied a grid search 22 

strategy (Antoniewicz et al. 2006): with the glucose uptake rate under three oxygen conditions 23 



 

 

normalized to a value of 100 units (gm DCW)-1 hr-1, the model exhaustively searched all 1 

combinations of independent variables (metabolite fluxes). Since the pyruvate shunt reaction 2 

(pyruvate+CO2�oxaloacetate via pyruvate carboxylase) consumes CO2 from the medium, the 3 

fraction of 13CO2 in the medium was also estimated. The step size of the grid search algorithm 4 

was 1 (normalized to the glucose uptake rate of 100 units (gm DCW)-1hr-1) for unknown fluxes 5 

and 0.01 for the 13CO2 fraction. All possible flux combinations were searched to determine the 6 

global minima of the objective function (Tang et al. 2007b):  7 

  8 

where vn are the unknown fluxes to be optimized in the program, Mi are the measured MS data, 9 

Ni are the corresponding model-simulated MS data, and δi are the corresponding standard 10 

deviations in the GC-MS data (1~2%). The unknown metabolic fluxes were calculated to 11 

minimize ε. To estimate the confidence interval for calculated fluxes, a Monte Carlo approach 12 

was employed (Zhao and Shimizu 2003). In brief, 20 isotopomer concentration data sets were 13 

generated by addition of normally distributed measurement noise to actual measurement data. 14 

The same optimization routine was used to estimate the best-fit flux distribution from these data 15 

sets.  Confidence limits for each flux value were obtained from the probability distribution of 16 

calculated flux resulting from the simulated data sets.  The model program was developed using 17 

MATLAB 7.0 (The Mathworks, Natick, MA).  The calculations were carried out using a Quad-18 

Process Server (Finetec, San Jose, CA) at the Lawrence Berkeley National Laboratory. 19 

 In silico flux balance analysis (FBA). FBA was used to estimate ethanol production 20 

potential by M10EXG and prioritize the pathways for genetic engineering. Since the genome 21 

sequence and functional metabolic pathway information of M10EXG were not available, in 22 

silico modelling was constructed using the Simpheny platform (Genomatica, San Diego, CA) to 23 



 

 

coarsely predict the M10EXG metabolic network (Mahadevan et al. 2006), with the following 1 

modifications: 1) two unique reactions found in Geobacillus strains (L-lactate dehydrogenase 2 

and pyruvate carboxylase) were added to the model; 2) The biomass composition for the 3 

M10EXG model is given in Supplementary Table S1. The model included ~1075 reactions and 4 

~760 constraints, and the flux calculation algorithm relied on implementing a series of 5 

physicochemical constraints, including thermodynamic directionality, enzymatic capacity 6 

constraints, and reaction stoichiometry constraints (Edwards and Palsson 2000a).  Since the 7 

number of reactions is much greater than the number of metabolites, the system requires the 8 

assumption of an objective function for the in silico flux balance analysis, i.e, maximizing cell 9 

growth or ethanol production (Stephanopoulos et al. 1998).   10 

Results and Discussion 11 

Growth kinetics and cellular metabolites under various oxygen conditions. Since 12 

Geobacillus thermoglucosidasius M10EXG grows in a minimal glucose medium between 55-13 

65ºC (its optimal growth temperature is 60ºC) with glucose as the sole carbon source, the 14 

bacterium contains complete biosynthesis pathways for all amino acids and other essential 15 

metabolites. The average doubling time in the exponential phase in minimal glucose medium 16 

was two hours under aerobic growth conditions and 3.5 hours under micro-aerobic conditions 17 

(Figure 1), i.e., the doubling time at high temperature was not faster than that of mesophilic 18 

bacteria (such as E. coli) under similar batch conditions (Shaikh et al. 2008). Under aerobic 19 

conditions, M10EXG produced ~0.64 mol acetate mol glucose -1 (Table 2). Acetate accumulation 20 

in the medium can inhibit cell growth, especially for mesophilic bacteria (Lynd 1989), due to 21 

change in the intracellular pH or inhibition of activities of key enzymes in central metabolism 22 

(Luli and Strohl 1990; Tang et al. 2007c). The production of acetate by aerobically growing 23 



 

 

bacteria is often observed when the carbon source is in excess, so bacteria can regulate acetyl-1 

CoA consumption rate and quickly generate ATP when the activity of key TCA cycle enzymes 2 

(e.g., citrate synthase) are inhibited (Majewski and Domach 1990). Under microaerobic or 3 

anaerobic conditions, the cells secreted lactate, ethanol, and formate, in addition to acetate (Table 4 

2).  Under completely anaerobic conditions, the L-lactate (>99% optical purity) production 5 

increased to 0.89 mol L-lactate mol-1 glucose, and the formate yield was ~1 mol mol-1 glucose 6 

(i.e., pyruvate-formate lyase replaced pyruvate dehydrogenase for acetyl-CoA production), while 7 

the molar yield of ethanol was ~ 0.38 mol mol-1 glucose. The large amounts of acids produced 8 

reduced the pH in the medium from 7.6 to ~5, and the cells entered the death phase (lysed) under 9 

micro-aerobic condition after 20 hrs (i.e., the OD600 dropped after 20 hrs). Finally, M10EXG can 10 

also grow in xylose minimal medium and exhibits similar growth kinetics under different oxygen 11 

conditions (Supplementary Table S3), which makes this microorganism an ideal candidate for 12 

bio-ethanol production from lignocellulosic biomass (contain up to 40% C5 sugars). However, 13 

M10EXG mainly utilized glucose as carbon source when both glucose (C6) and xylose (C5) 14 

were available (ratio 1:1) (Supplementary Table S4). This result indicates that the presence of 15 

glucose may strongly inhibit xylose metabolism.   16 

13C-based flux analysis of intra-cellular pathways under aerobic and micro-aerobic 17 

conditions. Isotopomer flux models were developed based on assumed central metabolic 18 

pathways to optimally fit all isotopomer data. The optimal flux distributions (based on a 19 

normalized glucose uptake rate of 100 units (gm DCW)-1 hr-1) and the confidence intervals of 20 

seven key intracellular fluxes (including glycolysis, PP pathway, TCA cycle and anapleurotic 21 

pathways) under both aerobic and micro-aerobic conditions are shown in Figure 2. The flux 22 

distribution results indicate that oxygen concentrations strongly affected the metabolic fluxes 23 



 

 

through the central pathways. Under aerobic conditions, approximately two-thirds of the glucose 1 

flowed through glycolysis (relative flux = 69) and the remainder through the pentose phosphate 2 

pathway (flux = 30), while the flux through citrate synthase (into the TCA cycle) was 64.  Under 3 

micro-aerobic conditions, growth was slower (0.20 hr-1) (Table 2), and the fluxes through TCA 4 

cycle and PP pathway (G6P�6PG) were reduced to 25 and 19, respectively. In vitro assays 5 

showed no evidence for transhydrogenase activity under our experimental conditions (Table 1).  6 

Flux through the PP pathway was sensitive to growth rate, most likely because NADPH to 7 

support biomass synthesis is mainly from PP pathway (Christiansen et al. 2002). On the other 8 

hand, B. subtilis showed much higher PP pathway flux (~70) that varied less with specific 9 

growth rate (Sauer et al. 1997). This is because B. subtilis can convert excess NADPH from the 10 

PP pathway to NADH via the transhydrogenase reaction and as such has greater flexibility in 11 

balancing redox (Dauner et al. 2001; Sauer et al. 1997). 12 

The flux results indicate that there is no Entner-Doudneroff (ED) pathway activity under 13 

either experimental condition, which is consistent with the lack of a phosphogluconate 14 

dehydratase (a key ED pathway enzyme) in the annotated Geobacillus kaustophilus genome 15 

(Alm et al. 2005) and with the fact that Bacillus species do not use the ED pathway (Goldman 16 

and Blumenthal 1963). Several anapleurotic reactions in M10EXG (as inferred from the 17 

Geobacillus kaustophilus genome annotation) were present based on in vitro enzyme assays 18 

(Table 1): Pyruvate�OAA (pyruvate shunt via pyruvate carboxylase), OAA�PEP (via PEP 19 

carboxykinase), and PEP�OAA (via PEP carboxylase). The flux results indicate that these 20 

anapleurotic reactions were down-regulated under micro-aerobic conditions: the OAA�PEP / 21 

Pyruvate flux declined from 54 to 37, and the combined flux from PEP and pyruvate to OAA 22 

declined from 44 to 24. Those non-biomass-related anapleurotic reactions may provide M10EXG 23 



 

 

central metabolism with flexibility to cope with various growth conditions (Tang et al. 2007b). 1 

The glyoxylate shunt, which reduces carbon flow through the oxidative branch of the TCA cycle 2 

(coupled with other anapleurotic pathways) and provides an alternative route for acetyl-CoA 3 

metabolism, was also measurable under aerobic and micro-aerobic conditions in M10EXG 4 

(Fischer and Sauer 2003).  5 

 Analysis of anaerobic pathways of M10EXG.  Under anaerobic conditions, M10EXG 6 

disposed part of the glucose through lactic acid and formic acid production. The formic acid 7 

yield (~1 mol mole-1 of glucose consumed) was approximately equal to the sum of the acetate 8 

and ethanol yields, indicating that acetyl-CoA is a precursor to ethanol (via alcohol 9 

dehydrogenase) and acetate under mixed acid fermentation (Figure 3). Based on the metabolite 10 

measurements and the reported mixed acid fermentation pathway of B. subtilis (Cruz Ramos et 11 

al. 2000), a simplified anaerobic pathway is proposed (Figure 3). Under anaerobic conditions, 12 

carbon flux between glycolysis and the PP pathway can be directly calculated based on the 13 

labelling information, because the flux ratio between the two pathways is reflected in the 14 

labelling pattern of 3-phosphoglycerate (inferred from serine) and pyruvate (inferred from 15 

alanine) (Sauer et al. 1997). Meanwhile, the in vitro activity of α-ketoglutarate dehydrogenase 16 

was one order magnitude lower than that measured when oxygen was available (Table 1). The 17 

data showed that the enzymes of the TCA cycle were significantly repressed under anaerobic 18 

conditions (Table 1) and that the TCA cycle was mainly used for biosynthesis. The major carbon 19 

fluxes were directed towards mixed acids and ethanol production, which could be directly 20 

measured.  Eight key fluxes were shown in Figure 3: the flux was through glucose-6-phosphate 21 

dehydrogenase (entrance to the oxidative branch of the PP pathway) under anaerobic conditions 22 

(flux=15); pyruvate was converted to lactate via L-lactate dehydrogenase (flux=89) or to acetyl-23 



 

 

CoA and formic acid via pyruvate formate lyase (flux=103); acetyl-CoA was mainly used for 1 

ethanol (flux=38) and acetate (flux=61) production. Compared to micro-aerobic conditions, 2 

formic acid production was eight-fold higher under anaerobic conditions, suggesting that 3 

pyruvate formate-lyase (PFL) was induced under anaerobic conditions (note: FNR, a 4 

transcriptional regulator to mediate PFL gene  (Sawers and Suppmann 1992) is annotated in 5 

Geobacillus kaustophilus). Under anaerobic conditions, M10EXG generated NADH primarily 6 

from glycolysis (glyceraldehyde-3-phosphate dehydrogenase) (flux = 190 ± 4) and consumed 7 

NADH mainly for lactate, ethanol, and acetate production (flux = 165 ± 7). 8 

 Verification of the isotopomer flux model.  The isotopomer-based flux analysis used 9 

herein is based on the labelling pattern of [13C]-amino acids to infer the [13C] labelling pattern of 10 

key metabolic intermediates. By tracing the path of 13C from singly-labelled carbon substrate to 11 

those metabolites in the pathway network, an isotopomer model can predict the carbon flux 12 

distribution through central metabolism.  To check the reliability of the flux analysis results, a 13 

Monte Carlo method was used to calculate confidence intervals of key intracellular fluxes to 14 

estimate uncertainty from measurement noise and experimental variation (as illustrated in 15 

Materials and Method section). The obtained confidence intervals for seven key intracellular 16 

pathways in Figure 2 showed that reaction G6P�6PG was best determined (confidence intervals 17 

for both aerobic and anaerobic conditions are within ±2), since 1-[13C]-glucose was good for 18 

differentiating the reactions of the PP pathway from glycolysis (Fischer et al. 2004).  However, 19 

fluxes of anapleurotic reactions between the pyruvate/PEP pool and OAA pool had the highest 20 

errors; for example, the confidence interval of OAA�PEP flux under aerobic conditions was 21 

±38.   This result indicated that the isotopomer data were not sufficient to constrain these two 22 

fluxes accurately. To further validate the calculated intracellular flux distribution, [2-13C] 23 



 

 

glucose was used as the carbon source and the labeling of resulting key amino acids was used to 1 

estimate the flux distribution under both aerobic and micro-aerobic conditions.  The results from 2 

[2-13C] glucose experiments were qualitatively consistent with the results from [1-13C] glucose 3 

experiments (Supplementary Figure S1).  Fluxes through reactions of the PP pathway, 4 

glycolysis, and the TCA cycle (via citrate synthase) were very similar (difference <5).  In 5 

contrast, the measured fluxes for PEP carboxylase, pyruvate shunt, and the glyoxylate shunt from 6 

the experiments using [2-13C] glucose had larger differences (up to 10) compared to the 7 

measured fluxes from experiments using [1-13C] glucose.  Errors in calculated fluxes may arise 8 

from several sources: 1) the isotopomer information may be insufficient to constrain certain 9 

anapleurotic reactions very accurately; 2) measurement uncertainty of extracellular metabolites 10 

in batch cultures; 3) protein degradation and reincorporation of metabolites from catabolized 11 

amino acids into metabolic intermediates. 12 

In silico analyses of metabolic network for ethanol production. Since genetic 13 

engineering of thermophilic bacteria is very difficult, it will, therefore, be beneficial to know 14 

which reactions are the most important targets for genetic manipulation to improve ethanol 15 

production. As such, an in silico flux balance analysis (FBA) was performed to coarsely predict 16 

the optimal cellular metabolism for ethanol production via Simpheny Software from Genomatica 17 

(San Diego, CA) (Mahadevan et al. 2006). The FBA model did not require isotopomer 18 

information or detailed kinetic parameters for individual metabolic reactions (Edwards and 19 

Palsson 2000a; Edwards and Palsson 2000b). Although these models are underdetermined and 20 

may not reflect the actual metabolic flux distribution if typical objective function is assumed 21 

without any additional constraints (e.g., maximum biomass production, Supplementary Figure 22 

S2), they have proven to be a useful tool to provide important guidelines to explore the target 23 



 

 

pathways for genetic engineering (Stephanopoulos et al. 1998). The theoretical maximum yields 1 

of acetate, ethanol, lactate, formate, and biomass, as well as the theoretical maximum growth rate 2 

(assuming an average carbon substrate uptake rate of 5 mM glucose (gm DCW)-1 hr-1), were 3 

estimated using the Simpheny model. The predicted maximum yields of the metabolites and 4 

biomass were much higher than the corresponding measured yields (Table 2).    A plot of the 5 

theoretical maximum ethanol production rate as the function of lactate and acetate production 6 

rates for two growth rates (0.1 hr-1 and 0.2 hr-1), with or without formate production, indicates 7 

that mixed acid production or a high growth rate significantly reduce the ethanol production rate 8 

(Figure 4), because the mixed acid fermentation and biomass growth compete for the precursors 9 

and reducing power (NADH) with ethanol production. Lactate production (by L-lactate 10 

dehydrogenase) has the largest impact on ethanol yield followed by acetate production (acetate 11 

kinase and phosphotransacetylase), while formate production (by pyruvate-formate lyase) has the 12 

least impact on ethanol yield.  13 

When growth rate maximization was used as the objective function, model results (Figure 14 

5, the three dotted arrows linking the measured ethanol fluxes with the corresponding measured 15 

growth rates) indicated that ethanol production by M10EXG was much lower than the theoretical 16 

value. Meanwhile, the growth rate and all fluxes through reactions of the PP pathway and TCA 17 

cycle declined when more ethanol production was specified (Figure 5).  The TCA cycle and 18 

oxidative PP pathway appeared to be the most sensitive to ethanol production, indicated by the 19 

slopes of the fluxes through each pathway as a function of ethanol production. Those pathways 20 

must be sufficiently down-regulated in order to produce high levels of ethanol. On the other 21 

hand, the non-oxidative PP pathway (G3P+S7P�E4P+F6P via transaldolase) appeared to be 22 

relatively insensitive to ethanol production.   23 



 

 

Summary 1 

 The rising cost and use of fossil fuels has renewed focus on lignocellulosic ethanol (Lin 2 

and Tanaka 2006) production via simultaneous saccharification and fermentation process (SSF) 3 

(Lin and Tanaka 2006). However, enzymes employed to hydrolyze lignocellulosic biomass to 4 

simpler sugars for fermentation generally have temperature optimum of around 55°C, whereas 5 

the industrial organisms used to ferment the sugars to ethanol or other products (e.g., 6 

Saccharomyces cerevisiae (Antoni et al. 2007) and E. coli (Dien et al. 2003)) have a lower 7 

operating temperature. Secondly, yeast cannot typically ferment C5 sugars (Sonderegger et al. 8 

2004) such as xylose, a major component of lignocellulosic biomass. Furthermore, common 9 

thermophilic ethanologens, e.g., Clostridium thermosaccharolyticum, are strict anaerobes (Lin 10 

and Tanaka 2006) and cannot tolerate high ethanol concentrations (>4% w/v) (Fong et al. 2006). 11 

Geobacillus thermoglucosidasius M10EXG overcomes some of these aforementioned limitations 12 

and has many potential advantages for ethanol or other bio-product production: it tolerates high 13 

ethanol concentrations (> 10% v/v); it can utilize a wide range of substrates (particularly 14 

pentoses and insoluble substrates), which makes it an attractive organism for simultaneous 15 

saccharification and fermentation of lignocellulosic biomass; there are lower risks of 16 

contamination by other microorganisms (Akao et al. 2007) due to growth at high temperatures;  17 

the growth medium will have desirable properties at high temperatures (reduced viscosity, 18 

increased diffusion rates and substrate solubility, reduced energy requirements for mixing, and 19 

the possibility of combining the fermentation and distillation processes to continuously extract 20 

ethanol) (Lin and Tanaka 2006; Lynd 1989). This study investigates this species’ metabolic 21 

network via in vitro enzyme assays and 13C based flux analysis. The obtained information 22 



 

 

provides guidelines for engineering the metabolic pathways for bioethanol production as well as 1 

other environmental and industrial applications.  2 
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Figure and Table Captions 1 

Figure 1: Growth kinetics of M10EXG under three oxygen conditions: □ aerobic, ◊ micro-2 

aerobic, ○ anaerobic.  3 

 4 

Figure 2.  Pathways and flux distributions of glucose metabolism under aerobic (top) and micro-5 

aerobic (bottom) conditions.  The amino acids used for isotopomer models were shown in 6 

parentheses. The glucose uptake rates were normalized to a value of 100. Dotted lines indicate 7 

that the pathways are not active. Abbreviations: Acetyl-CoA, acetyl-coenzyme A; CIT, citrate; 8 

E4P, erythrose-4-phosphate; C1, 5,10-Me-THF; F6P, fructose-6-phosphate; G6P, glucose-6-9 

phosphate; 6PG, 6-phosphogluconate; ICT, isocitrate; MAL, malate; OAA, oxaloacetate; OXO, 10 

2-oxoglutarate; PEP, phosphoenolpyruvate; PGA, 3-phosphoglycerate; C5P, ribose-5-phosphate 11 

(or ribulose-5-phosphate or xylulose-5-phosphate); S7P, sedoheptulose-7-phosphate; SUC, 12 

succinate; T3P, triose-3-phosphate.  13 

 14 

Figure 3.  M10EXG mixed acid fermentation. The abbreviations were the same as those in 15 

Figure 2. Key reactions (and their corresponding relative fluxes): 1. glucose-6-phosphate 16 

isomerase; 2. glucose-6-phosphate dehydrogenase; 3. T3P dehydrogenase; 4. L-lactate 17 

dehydrogenase; 5. pyruvate-formate lyase; 6. acetaldehyde dehydrogenase; 7. alcohol 18 

dehydrogenase; 8. phosphate acetyltransferase/acetate kinase.  The arrows were drawn in 19 

proportion to the fluxes.  Fluxes below 10% of the glucose uptake rate were represented by non-20 

scaled hairlines. 21 

 22 



 

 

Figure 4. Effect of mixed acids production and biomass growth rate on ethanol production as 1 

calculated by the FBA model.  The glucose uptake rate was set to 5 mmol hr-1 g-1 biomass. The 2 

units for ethanol and acids production rates are mmol hr-1 g-1 biomass. (a) Growth rate = 0.1 hr-1, 3 

formate production = 0.  (b) Growth rate = 0.2 hr-1, formate production = 0.  (c) Growth rate = 4 

0.1 hr-1, formate production was assumed to equal the sum of the ethanol and acetate production 5 

rates; (d) Growth rate = 0.2 hr-1, formate production was assumed to equal the sum of the ethanol 6 

and acetate production rates. 7 

 8 

Figure 5.  Change in central metabolism as a function of ethanol production as predicted by the 9 

in silico flux balance model (Simpheny). The objective function used for the calculations was the 10 

maximal biomass production. Symbols: growth rate (○); flux into the TCA cycle via citrate 11 

synthase (▲); flux into the pentose phosphate pathway via glucose 6-phosphate dehydrogenase 12 

(♦) and via transaldolase (GAP+S7P�E4P+F6P) (●); flux through the pyruvate shunt (■).  The 13 

three dashed arrows linked the measured ethanol flux values with their corresponding measured 14 

growth rates for the three growth conditions (aerobic, micro-aerobic, and anaerobic).  The fact 15 

that the lines (skewed dashed arrows) were not vertical indicates a difference between in silico 16 

model predicted flux (optimal metabolism) and experimentally measured flux (actual 17 

metabolism). 18 

 19 

Table 1. Enzyme activities in cell extracts of Geobacillus thermoglucosidasius M10EXG under 20 

three oxygen conditions (n=3).  21 

 22 



 

 

Table 2. Growth kinetics and yields of ethanol and organic acids under the three oxygen 1 

conditions: aerobic growth (G + O2), micro-aerobic growth (G + µO2), anaerobic growth (G - 2 

O2).  3 
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Figure 1. Growth kinetics of M10EXG under three oxygen conditions: □ aerobic, ◊ micro-
aerobic, ○ anaerobic. 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Pathways and flux distributions of glucose metabolism under aerobic (top) and micro-
aerobic (bottom) conditions.  The amino acids used for isotopomer models were shown in 
parentheses. The glucose uptake rates were normalized to a value of 100. Dotted lines indicate 
that the pathways are not active. Abbreviations: Acetyl-CoA, acetyl-coenzyme A; CIT, citrate; 
E4P, erythrose-4-phosphate; C1, 5,10-Me-THF; F6P, fructose-6-phosphate; G6P, glucose-6-
phosphate; 6PG, 6-phosphogluconate; ICT, isocitrate; MAL, malate; OAA, oxaloacetate; OXO, 
2-oxoglutarate; PEP, phosphoenolpyruvate; PGA, 3-phosphoglycerate; C5P, ribose-5-phosphate 
(or ribulose-5-phosphate or xylulose-5-phosphate); S7P, sedoheptulose-7-phosphate; SUC, 
succinate; T3P, triose-3-phosphate.  



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  M10EXG mixed acid fermentation. The abbreviations were the same as those in 
Figure 2. Key reactions (and their corresponding relative fluxes): 1. glucose-6-phosphate 
isomerase; 2. glucose-6-phosphate dehydrogenase; 3. T3P dehydrogenase; 4. L-lactate 
dehydrogenase; 5. pyruvate-formate lyase; 6. acetaldehyde dehydrogenase; 7. alcohol 
dehydrogenase; 8. phosphate acetyltransferase/acetate kinase.  The arrows were drawn in 
proportion to the fluxes.  Fluxes below 10% of the glucose uptake rate were represented by non-
scaled hairlines. 
 

 

 

 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of mixed acids production and biomass growth rate on ethanol production as 
calculated by the FBA model.  The glucose uptake rate was set to 5 mmol hr-1 g-1 biomass. The 
units for ethanol and acids production rates are mmol hr-1 g-1 biomass. (a) Growth rate = 0.1 hr-1, 
formate production = 0.  (b) Growth rate = 0.2 hr-1, formate production = 0.  (c) Growth rate = 
0.1 hr-1, formate production was assumed to equal the sum of the ethanol and acetate production 
rates; (d) Growth rate = 0.2 hr-1, formate production was assumed to equal the sum of the ethanol 
and acetate production rates. 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Change in central metabolism as a function of ethanol production as predicted by the 
in silico flux balance model (Simpheny). The objective function used for the calculations was the 
maximal biomass production. Symbols: growth rate (○); flux into the TCA cycle via citrate 
synthase (▲); flux into the pentose phosphate pathway via glucose 6-phosphate dehydrogenase 
(♦) and via transaldolase (GAP+S7P�E4P+F6P) (●); flux through the pyruvate shunt (■).  The 
three dashed arrows linked the measured ethanol flux values with their corresponding measured 
growth rates for the three growth conditions (aerobic, micro-aerobic, and anaerobic).  The fact 
that the dashed arrows were not vertical indicated a difference between in silico model predicted 
fluxes (optimal metabolism) and experimentally measured fluxes (actual metabolism). 

0

20

40

60

80

100

0 50 100 150 200

Ethanol fluxes

F
lu

xe
s 

o
f 

ce
n

tr
al

 p
at

h
w

ay
s

0

0.15

0.3

0.45

G
ro

w
th

 rate (h
r -1)

aerobic

µ=0.31 hr-1

micro-aerobic

µ=0.20 hr-1

anaerobic

µ=0.13 hr-1



 

 

Tables 

Table 1. Enzyme activities in cell extracts of Geobacillus thermoglucosidasius M10EXG under 

three oxygen conditions (n=3). 

Enzymes  EC number           Specific activity (units g protein-1) 

    Aerobic        Micro-aerobic      Anaerobic 

Oxalacetate decarboxylase (- Na+) EC 4.1.1.3 0 3 ± 3 0 

Oxalacetate decarboxylase (+ Na+) EC 4.1.1.3 0       2 ± 3 0 

Malic Enzyme (NADP+) EC 1.1.1.40 0 0 0 

Malic Enzyme (NAD+) EC 1.1.1.38 0 0 0 

α-ketoglutarate dehydrogenase EC 1.2.4.2 230 ± 52 92 ± 75    26 ± 18 

Pyruvate carboxylase EC 6.4.1.1    682 ± 385    660 ± 279  615 ± 246 

PEP carboxykinase EC 4.1.1.49 249 ± 50    373 ± 25  298 ± 22 

Isocitrate lyase EC 4.1.3.1 26 ± 2 22 ± 4 21 ± 5 

PEP carboxylase EC 4.1.1.31      89 ± 58      79 ± 70 49 ± 21 

Transhydrogenase EC 1.6.1.1. 0 0 0 

Note: one unit catalyzes the formation of one µmol of substrate per minute. 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 2. Growth kinetics and yields of ethanol and organic acids under the three oxygen 

conditions: aerobic growth (G + O2), micro-aerobic growth (G + µO2), anaerobic growth (G - 

O2).  

Yield1 G + O2 G + µO2 G-O2
2 Max3 

Yace/s 0.64±0.12 0.40±0.05 0.61±0.10 2.6 

Y lact/s 0.02±0.01 0.67±0.07 0.89±0.06 2 

Yetho/s 0.01±0.01 0.28±0.04 0.38±0.07 2 

Yform/s 0 0.13±0.05 1.03±0.14 5.6 

Ybiomass/s 0.27±0.05 0.19±0.04 0.08±0.03 0.34 

Growth rate, hr-1 0.31±0.04 0.20±0.04 0.13±0.03 0.44 

 
1Metabolite yield unit, mol metabolites mol-1 glucose. Biomass yield unit, DCW g-1 glucose.  

2A small amount of succinate was also detected.  

3The maximum yield for each metabolite was predicted using Simpheny.  The model assumed a 

glucose uptake rate equal to 5 mM hr-1 DCW -1.  
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