An Atomic Gravitational Wave Interferometric Sensor (AGIS)

PDF Version Also Available for Download.

Description

We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with baseline {approx} 1 km can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec ... continued below

Physical Description

41 pages

Creation Information

Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC; Hogan, Jason M.; Kasevich, Mark A. et al. August 1, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 22 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with baseline {approx} 1 km can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment with baseline {approx} 1000 km can probe the same frequency spectrum as LISA with comparable strain sensitivity {approx} 10{sup -20}/{radical}Hz. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations, acceleration noise, and significantly reduces spacecraft control requirements. We analyze the backgrounds in this configuration and discuss methods for controlling them to the required levels.

Physical Description

41 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13336
  • Grant Number: AC02-76SF00515
  • DOI: 10.2172/935683 | External Link
  • Office of Scientific & Technical Information Report Number: 935683
  • Archival Resource Key: ark:/67531/metadc893167

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 22, 2016, 8:16 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 22

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC; Hogan, Jason M.; Kasevich, Mark A. et al. An Atomic Gravitational Wave Interferometric Sensor (AGIS), report, August 1, 2008; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc893167/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.