Final Technical Report

PDF Version Also Available for Download.

Description

Using current methods, oil and gas in the subsurface cannot be reliably predicted from seismic data. This causes domestic oil and gas fields to go undiscovered and unexploited, thereby increasing the need to import energy. The general objective of this study was to demonstrate a simple and effective methodology for estimating reservoir properties (gas saturation in particular, but also including lithology, net to gross ratios, and porosity) from seismic attenuation and other attributes using P and S-waves. Phase I specific technical objectives: • Develop Empirical or Theoretical Rock Physics Relations for Qp and Qs • Create P-wave and S-wave Synthetic ... continued below

Physical Description

3,753KB, 30 pages

Creation Information

Joel Walls, Richard Uden, Scott Singleton, Rone Shu, Gary Mavko April 12, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Using current methods, oil and gas in the subsurface cannot be reliably predicted from seismic data. This causes domestic oil and gas fields to go undiscovered and unexploited, thereby increasing the need to import energy. The general objective of this study was to demonstrate a simple and effective methodology for estimating reservoir properties (gas saturation in particular, but also including lithology, net to gross ratios, and porosity) from seismic attenuation and other attributes using P and S-waves. Phase I specific technical objectives: • Develop Empirical or Theoretical Rock Physics Relations for Qp and Qs • Create P-wave and S-wave Synthetic Seismic Modeling Algorithms with Q • Compute P-wave and S-wave Q Attributes from Multi-component Seismic Data All objectives defined in the Phase I proposal were accomplished. During the course of this project, a new class of seismic analysis was developed based on compressional and shear wave inelastic rock properties (attenuation). This method provides a better link between seismic data and the presence of hydrocarbons. The technique employs both P and S-wave data to better discriminate between attenuation due to hydrocarbons versus energy loss due to other factors such as scattering and geometric spreading. It was demonstrated that P and S attenuation can be computed from well log data and used to generate synthetic seismograms. Rock physics models for P and S attenuation were tested on a well from the Gulf of Mexico. The P and S-wave Q attributes were computed on multi-component 2D seismic data intersecting this well. These methods generated reasonable results, and most importantly, the Q attributes indicated gas saturation.

Physical Description

3,753KB, 30 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/NT/86227-4
  • Grant Number: FG02-04ER86227
  • Office of Scientific & Technical Information Report Number: 934923
  • Archival Resource Key: ark:/67531/metadc893166

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 12, 2005

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Joel Walls, Richard Uden, Scott Singleton, Rone Shu, Gary Mavko. Final Technical Report, report, April 12, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc893166/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.