Contributions of kinematics and viscoelastic lap deformation on the suface figure during full aperture polishing of fused silica

PDF Version Also Available for Download.

Description

A typical optical fabrication process involves a series of basic process steps including: (1) shaping, (2) grinding, (3) polishing, and sometimes (4) sub-aperture tool finishing. With significant innovation and development over the years in both the front end (shaping using CNC machines) and the back end (sup-aperture tool polishing), these processes have become much more deterministic. However, the intermediate stages (full aperture grinding/polishing) in the process, which can be very time consuming, still have much reliance on the optician's insight to get to the desired surface figure. Such processes are not presently very deterministic (i.e. require multiple iterations to get ... continued below

Physical Description

PDF-file: 3 pages; size: 90.7 Kbytes

Creation Information

Suratwala, T I; Steele, R A & Feit, M D October 9, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A typical optical fabrication process involves a series of basic process steps including: (1) shaping, (2) grinding, (3) polishing, and sometimes (4) sub-aperture tool finishing. With significant innovation and development over the years in both the front end (shaping using CNC machines) and the back end (sup-aperture tool polishing), these processes have become much more deterministic. However, the intermediate stages (full aperture grinding/polishing) in the process, which can be very time consuming, still have much reliance on the optician's insight to get to the desired surface figure. Such processes are not presently very deterministic (i.e. require multiple iterations to get desired figure). The ability to deterministically finish an optical surface using a full aperture grinding/polishing will aid optical glass fabricators to achieve desired figure in a more repeatable, less iterative, and more economical manner. Developing a scientific understanding of the material removal rate is a critical step in accomplishing this. In the present study, the surface figure and material removal rate of a fused silica workpiece is measured as a function of polishing time using Ceria based slurry on a polyurethane pad or pitch lap under a variety of kinematic conditions (motion of the workpiece and lap) and loading configurations. The measured results have been applied to expand the Preston model of material removal (utilizing chemical, mechanical and tribological effects). The results show that under uniform loading, the surface figure is dominated by kinematics which can be predicted by calculating the relative velocity (between the workpiece and the lap) with time and position on the workpiece. However, in the case where the kinematics predict a time-averaged removal function over the workpiece that is uniform, we find experimentally that the surface deviates significantly from uniform removal. We show that this non-uniform removal is caused by the non-uniform stress distribution resulting from the viscoelastic nature of the lap. The viscoelastic lap results in a strain difference across the part due to a time dependent deformation of the lap as it travels pass the workpiece. A quantitative viscoelastic model has been developed to explain this effect. The effects of the viscoelastic lap on the removal function can be removed by pre-straining the lap before it contacts the workpiece which have shown better than l/4 surfaces being maintained with continuous removal.

Physical Description

PDF-file: 3 pages; size: 90.7 Kbytes

Source

  • Presented at: Euspen 10th Anniversary International Conference, Zurich, Switzerland, May 18 - May 22, 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-235542
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 944344
  • Archival Resource Key: ark:/67531/metadc893109

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 9, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 23, 2016, 11:33 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Suratwala, T I; Steele, R A & Feit, M D. Contributions of kinematics and viscoelastic lap deformation on the suface figure during full aperture polishing of fused silica, article, October 9, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc893109/: accessed August 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.