Fabry-Perot / PDV Comparison

Ralph hodgin, Chadd May, Roy Hanks, Don Hansen, Tony Whitworth, Ted Strand

May 8, 2007

51st Annual Fuze Conference
Nashville, TN, United States
May 22, 2007 through May 24, 2007
Fabry Perot / PDV Comparison

51st Annual FUZE Conference

May 24, 2007

Ralph Hodgin, Chadd May, Roy Hanks, Don Hansen, Tony Whitworth

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48
Compare Fabry-Perot to PDV

- Objective: will PDV measure the fast pulses seen with exploding bridge flyers

- Each test fired under same conditions
 - Change probes for Fabry-Perot & PDV
 - 1-2 shots for each setup

- Parylene & Spun Kapton

- All Shots into LiF under vacuum

- 0.3 uF Fireset

- Six shots with PDV
What is a Slapper

- Substrate
- Bridge Material
- Flyer Material
- Barrel Length
- Target
 - H.E.
 - LIF

![Diagram of Slapper components]

Ralph Hodgin
How do you fire a Slapper?

[Diagram with labeled parts: Target, Barrel, Flyer, Exploding Foil, high current, and Voltage (V).]
General Layout of Two-Beam Fabry-Perot System for Diagnostic Measurements on Slapper Initiators

- Target
- Pulsed Nd:YAG
- Slow Cavity
- Fast Cavity
- Fast Camera
- Sweep Window

Down to 30ns
Fabry-Perot in HEAF

- Room Size
- 2 Fabry-Perot
- 2 Streak Cameras
- Yag Laser
Photonic Doppler Velocimeter (PDV)

- Portable system – rack mount
- Doppler Velocimetry
- Greater than 5 mm/µsec velocity
- Limited by bandwidth only

Ralph Hodgin
The Fill-Time of the Fabry-Perot Cavity may Filter Sub-Nanosecond Data – PDV may be a Solution

Experimental and calculated velocity wave profiles into LiF for a 50um flight distance.

- Portable system – rack mount
- Doppler Velocimetry
- Greater than 5 mm/µsec velocity
- Limited by bandwidth only

Ralph Hodgin
What is PDV (Photonic Doppler Velocimeter)

High speed detectors measure the difference in frequency, 'the Beat', between the original signal and Doppler-shifted return signal.
The ‘beat’ frequency is converted to amplitude

Expanded view

- 40G sample digitizer
- 25ps/point
- 1550 nm laser wavelength
Fabry-Perot Measurements Conducted in Vacuum Provide Information on Slapper’s Pulse Duration and Equation of State

Working in a vacuum eliminates the air cushion and the air flash at impact.

Fabry-Perot and PDV Setup

Ralph Hodgin
Kowin Simulation of a 60.0um Parylene-C Flyer into LiF with Strong Shock Shows Stepped-Top as Seen with Fast Fabry-Perot Diagnostic

- For thick flyers (>40um) a shock wave builds in flyer material
- Shock causes a second jump in Up in LiF as shown here

Impact into LiF

Front Surface Velocity of 68.8um Flyer

Ralph Hodgin
68.6um Parylene - Fabry

- Complex Return
- Front & Rear flyer surface producing separate returns
- Multiple Returns are easily seen with fabry perot
- Transparent material
The 60um Parylene-C Flyer Impact Irregularity

- Two pressure pulses were measured with Fast Fabry-Perot System

- Originally we believed that the flyer may have spalled

- After witnessing this effect in other thick flyers we hypothesize that the second step is the result of a strong shock in the thick flyer...
68.8u Parylene Flyer

Raw Fabry-Perot Data

PDV Spectrograph with 3ns window

Reanalyzed with a 6ns FFT window

Ralph Hodgin
Comparison for 68.6um Parylene-C Flyer

- All PDV shots used a 3.2ns FFT Window
- Should try faster window for pressure pulse
- One of several methods for data analysis

The ‘step’ on the pressure pulse seen on both Fabry-Perot and PDV

Ralph Hodgin
50.4u Paralyne Flyer Spectograph & Fabry-Perot

Ralph Hodgin
PDV/Fabry-Perot Comparison 50.4um Parylene-C

Ralph Hodgin
Thin flyers produce a very narrow pulse on impact

Ralph Hodgin
12.3um Flyer Fabry to PDV Comparison Shot

- PDV 3ns window did see the pulse
- Same Velocity profile

12.3 um Parylene-C Flyer into LiF

- Fabry
- PDV #1
- PDV #2

Time (us)

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Velocity (mm/μs)

0 0.04 0.06 0.065 0.07 0.075 0.08

Ralph Hodgin
PDV – Hand Read of the pulse found 5 data points on this 1.2ns impact pulse
Conclusions

- **Fabry-Perot**
 - Graphic – instantly see the velocity/time data
 - Complex returns easily seen
 - Speed limited by the fabry cavity (0.5ns)
 - Expensive, Room size

- **PDV**
 - Must be analyzed to see the data
 - Complex returns are seen with additional analysis
 - Speed limited only by the recording digitizer
 - Portable, less expensive