Uranium and Aluminosilicate Surface Precipitation Tests

PDF Version Also Available for Download.

Description

The 2H evaporator at the Savannah River Site has been used to treat an aluminum-rich waste stream from canyon operations and a silicon-rich waste stream from the Defense Waste Processing Facility. The formation of aluminosilicate scale in the evaporator has caused significant operational problems. Because uranium has been found to accumulate in the aluminosilicate solids, the scale deposition has introduced criticality concerns as well. The objective of the tests described in this report is to determine possible causes of the uranium incorporation in the evaporator scale materials. The scope of this task is to perform laboratory experiments with simulant solutions ... continued below

Creation Information

Hu, M.Z. November 27, 2002.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The 2H evaporator at the Savannah River Site has been used to treat an aluminum-rich waste stream from canyon operations and a silicon-rich waste stream from the Defense Waste Processing Facility. The formation of aluminosilicate scale in the evaporator has caused significant operational problems. Because uranium has been found to accumulate in the aluminosilicate solids, the scale deposition has introduced criticality concerns as well. The objective of the tests described in this report is to determine possible causes of the uranium incorporation in the evaporator scale materials. The scope of this task is to perform laboratory experiments with simulant solutions to determine if (1) uranium can be deposited on the surfaces of various sodium aluminosilicate (NAS) forms and (2) aluminosilicates can form on the surfaces of uranium-containing solids. Batch experiments with simulant solutions of three types were conducted: (1) contact of uranium solutions/sols with NAS coatings on stainless steel surfaces, (2) contact of uranium solutions with NAS particles, and (3) contact of precipitated uranium-containing particles with solutions containing aluminum and silicon. The results show that uranium can be incorporated in NAS solids through encapsulation in bulk agglomerated NAS particles of different phases (amorphous, zeolite A, sodalite, and cancrinite) as well as through heterogeneous deposition on the surfaces of NAS coatings (amorphous and cancrinite) grown on stainless steel. The results also indicate that NAS particles can grow on the surfaces of precipitated uranium solids. Particularly notable for evaporator operations is the finding that uranium solids can form on existing NAS scale, including cancrinite solids. If NAS scale is present, and uranium is in sufficient concentration in solution to precipitate, a portion of the uranium can be expected to become associated with the scale. The data obtained to date on uranium-NAS affinity are qualitative. A necessary next step is to quantitatively determine the amounts of uranium that may be incorporated into NAS scale solids under differing conditions e.g., varying silicon/aluminum ratio, uranium concentration, temperature, and deposition time.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2002/201
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/885671 | External Link
  • Office of Scientific & Technical Information Report Number: 885671
  • Archival Resource Key: ark:/67531/metadc892939

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 27, 2002

Added to The UNT Digital Library

  • Sept. 23, 2016, 2:42 p.m.

Description Last Updated

  • Dec. 8, 2016, 1:20 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hu, M.Z. Uranium and Aluminosilicate Surface Precipitation Tests, report, November 27, 2002; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc892939/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.