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ABSTRACT 
This report summarizes the research efforts on the DOE supported research 

project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the 

fundamental understandings of the physical mechanisms involved in combined 

percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling 

and exploration of hard-rock reservoirs.   

The project has been divided into multiple tasks: literature reviews, analytical and 

numerical modeling, full scale laboratory testing and model validation, and final report 

delivery.   Literature reviews document the history, pros and cons, and rock failure 

physics of percussion drilling in oil and gas industries.  Based on the current 

understandings, a conceptual drilling model is proposed for modeling efforts.  Both 

analytical and numerical approaches are deployed to investigate drilling processes such 

as drillbit penetration with compression, rotation and percussion, rock response with 

stress propagation, damage accumulation and failure, and debris transportation inside the 

annulus after disintegrated from rock.  For rock mechanics modeling, a dynamic 

numerical tool has been developed to describe rock damage and failure, including rock 

crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and 

rock weakening by repetitive compression-tension loading.  Besides multiple failure 

criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a 

fatigue/damage algorithm to update rock properties during each impact.  From the model, 

Rate of Penetration (ROP) and rock failure history can be estimated.  For cuttings 

transport in annulus, a 3D numerical particle flowing model has been developed with aid 

of analytical approaches.  The tool can simulate cuttings movement at particle scale under 

laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal.  

To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, 

as well as single impact tests, have been designed and executed.  Both Berea sandstone 

and Mancos shale samples are used.  In single impact tests, three impacts are sequentially 

loaded at the same rock location to investigate rock response to repetitive loadings. The 

crater depth and width are measured as well as the displacement and force in the rod and 

the force in the rock. Various pressure differences across the rock-indentor interface (i.e. 

bore pressure minus pore pressure) are used to investigate the pressure effect on rock 
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penetration.  For hammer drilling tests, an industrial fluid hammer is used to drill under 

both underbalanced and overbalanced conditions.  Besides calibrating the modeling tool, 

the data and cuttings collected from the tests indicate several other important 

applications.  For example, different rock penetrations during single impact tests may 

reveal why a fluid hammer behaves differently with diverse rock types and under various 

pressure conditions at the hole bottom.   On the other hand, the shape of the cuttings from 

fluid hammer tests, comparing to those from traditional rotary drilling methods, may help 

to identify the dominant failure mechanism that percussion drilling relies on.  If so, 

encouraging such a failure mechanism may improve hammer performance.  

The project is summarized in this report.  Instead of compiling the information 

contained in the previous quarterly or other technical reports, this report focuses on the 

descriptions of tasks, findings, and conclusions, as well as the efforts on promoting 

percussion drilling technologies to industries including site visits, presentations, and 

publications.  As a part of the final deliveries, the 3D numerical model for rock 

mechanics is also attached.   
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1 EXECUTIVE SUMMARY  
Under the DOE contract (DE-FC26-03NT41999), Terralog Technologies, Inc. (TTI) has 

carried out a research project, Fundamental Research on Percussion Drilling: Improved 

Rock Mechanics Analysis, Advanced Simulation Technology, and Full-Scale Laboratory 

Investigations.  The objective of this research is to significantly advance the fundamental 

understandings of the physical mechanisms involved in combined percussion and rotary 

drilling, and thereby facilitate more efficient and lower cost drilling and exploration of 

hard-rock reservoirs. This final report summarizes TTI research achievements from Jan 1, 

2004 to Dec 21, 2005.   

 

The estimated yearly cost to drill hard rock in the US is $1,200 million dollars (MM).  

Potential savings of $200MM to $600MM are possible if the penetration rate in hard rock 

is doubled with the assumption that bit life is reasonable (Tibbitts et al., 2002).  It has 

been widely recognized that percussion drilling (even without rotary) has potential to 

provide faster penetration than conventional rotary drill or diamond drill, especially in 

some hard formations such as granite, sandstone, limestone, dolomite, etc.    Besides a 

large increase of Penetration (ROP), percussion drilling improves hole geometry, reduces 

drillstring stresses, generates better and larger cuttings, and lowers the cost per foot 

substantially.   On the other hand, negative factors such as inclusive overall results, risks 

in operation (such as mechanical failure), poor understanding and therefore control of 

drilling processes, and economical uncertainties greatly jeopardize the acceptance of 

percussion drilling technology into oil and gas industries.  As a consequence, there is no 

such numerical, analytical, or empirical model available for drilling engineers as what 

exists in conventional rotary drilling. 

 

First, intensive literature reviews have covered a wide range of topics such as rock 

drilling, rock excavation, rock fragmentation, rock quarrying, boring, and soil digging in 

multi-disciplines such as Petroleum Engineering, Rock Engineering, Tunnel Engineering, 

Mining Engineering, Mechanical Engineering, and Quarry Engineering.  Different 

theories have been exploited including damage mechanics, failure mechanics, rock 

dynamics, fracture mechanics, penetration mechanics, etc.  As a highlight of the review, a 
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conceptual physical model for percussion drilling has been proposed.   Three main 

processes involved in percussion drilling are summarized for modeling efforts, such as 

drillbit penetration with compression, rotation and percussion, rock response with stress 

propagation, damage accumulation and failure, and debris transportation inside the 

annulus after disintegrated from rock.   

 

Based on the conceptual model, analytical efforts are laid out.  Three failure mechanisms 

are proposed to account for rock damage and failure during bit-rock interactions, 

including rock crushing by compressive bit load, rock fracturing by both shearing and 

tensile forces, and rock fatigue by repetitive compression-tension type of loading.  

Possible theoretical candidates, including stress wave theory, damage mechanics, and 

elastoplastic continuum stress theory, are proposed for theoretical development of rock 

defragmentation, along with some empirical correlations.  Using Saint-Venant’s 

principle, a set of analytical solutions for vertical normal loading in the shapes of point, 

line, and circular, and shear loading on the surface of a semi-infinite elastic medium have 

been developed.  The results are compared and confirmed with numerical solutions.  

With fluid dynamics coupled with particle mechanics, cuttings transport is investigated 

both at macroscopic and microscopic levels. Fluid dynamics is coupled with particle 

mechanics so that not only macroscopic fluid behavior but the effect of solid particles on 

mud flow at microscopic level can be described either as a Newtonian or non-Newtonian, 

laminar or turbulent flow. 

 

As a result of these developments, numerical simulations of stresses in rock around bit 

and cuttings transport in annulus are carried out with numerical tools such as Finite 

Element Modeling code FLAC3D and Discrete Element Modeling code PFC3D, which 

were selected for this project after a review of available FEM and DEM codes.  First, one 

column elements subjected to static and periodic vertical loadings with/without confining 

stress are simulated.  Different material models are tested, including elastic model, Mohr-

Coulomb model, and Strain Softening (SS) model. After comparing the results, a 

preference of SS model is selected for further development.  Next, various failure criteria, 

such as strain-based failure criteria (critical strain and critical shear plastic strain criteria), 
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and tensile criteria, are applied to determine when, where, and how rock fails after post-

yield state.  A Rayleigh damping feature is used to dissipate excessive oscillation energy, 

while a fatigue/damage algorithm updates rock properties due to cyclic loading.   

Significant gains have been achieved in terms of stress wave propagation, rock damage 

and failure, and dynamic responses of rock with percussive loading patterns.  For 

example, it has been found that compressive failure due to high impact force may cause 

dominant rock failure during bit-rock contact, while rock may fail in tension if there is 

not enough bottom hole pressure acting on the exposed rock surface. The latter may 

explain why hammer drilling performs better under underbalanced pressure condition. 

 

For cuttings transport, the discrete particle models are developed.  Cuttings are 

introduced as either spherical particles or particle clumps, and continuous cuttings 

generation is achieved. Both axial flow with and without pipe rotation, and cuttings 

generated from both inside drillbit slots and whole bit area are simulated.  Parameters that 

affect carrying capacity of drilling fluid are investigated, such as pump rate (i.e. mud 

circulation rate), fluid viscosity and density, particle shape and mass, rotation per minute 

(RPM), and ROP.   Their effects on fluid flow transport efficiency and particle behaviors 

are detailed.  These accomplishments capture fundamental physics of cuttings transport in 

annulus, including interactions between cutting particles, fluid viscous drag force due to 

velocity difference between fluid and particles, cuttings settlement due to buoyancy force 

and gravity force, and a turbulent flow resulting from particle radial movement (i.e. from 

the center to the surface of pipe).  With intensive visualization efforts, a set of interesting 

movies have been generated during each simulation. 

 

To verify the theoretical models, a series of laboratory tests, including both full-scale 

fluid hammer tests and single impact tests, are executed.  Both Berea sandstone and 

Mancos shale are used as samples.  Their mechanical properties, including moduli, 

Poisson’s ratio, cohesive strength, friction angle, tensile strength, etc., are first 

determined from confined triaxial tests and Brazilian tests.  For each impact test, three 

impacts are sequentially loaded at the same rock location to investigate rock response to 

repetitive loadings.  After each impact, crater depth and width are measured and rock 
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debris is washed to leave a clean rock surface for the next impact. Meanwhile both the 

displacement and force in the rod and the force in the rock are recorded at high frequency 

levels of about 100 KHz.  Various pressure differences across the rock-indentor interface 

(i.e. bore pressure minus pore pressure) are implemented to investigate the pressure effect 

on rock penetration.  For hammer drilling tests, Smith International provided the use of 

their mud-hammer bit which was used to drill Berea sandstone and Mancos shale under 

both underbalanced and overbalanced conditions.  Water-based mud of 1.2g/cm3 density 

circulates fast enough to clear failed rocks at the hole bottom.  During the tests, Rate of 

Penetration is recorded continuously from one pressure condition to another. Cuttings are 

collected and analyzed after the tests.  Besides calibrating the modeling tool, the data and 

cuttings collected from the tests indicate several other important applications.  For 

example, different rock penetrations during single impact tests may reveal why a fluid 

hammer behaves differently with diverse rock types and under various pressure 

conditions at the hole bottom.   On the other hand, the shape of the cuttings from fluid 

hammer tests, in comparison to those from traditional rotary drilling methods, may help 

to identify the dominant failure mechanism that percussion drilling relies on.  If so, 

encouraging such a failure mechanism may improve hammer performance. 

 

These achievements significantly advance the fundamental understandings of the 

physical mechanisms involved in percussive-rotary drilling, and thereby may facilitate 

more efficient and lower cost drilling and exploration of hard-rock reservoirs. 

 

 
2 PROJECT OUTLINE 
 

2.1 Tasks performed   

Based on TASKS TO BE PERFORMED in the contract, a detailed outline of the project 

is listed below: 

 

Task 1 Technology Reviews 

Subtask 1.1 Review hammer drilling in petroleum industry 
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Subtask 1.2 Review penetrating with vibrating in mining, boring, tunneling, 

cutting, excavating, and defragmenting applications and modeling 

efforts 

Subtask 1.3 Review failure criterion and damage mechanics 

Subtask 1.4 Review cuttings transport, especially in annulus 

 

Task 2 Analytical Modeling of PD mechanisms 

Subtask 2.1 Develop conceptual physical model and setup prototypes for rock, 

bit, and debris flow 

About rock behavior: 

Subtask 2.2 Determine physical processes involved in rock reactions to 

percussive-rotary drill, describe boundary and loading conditions 

Subtask 2.3 Calculate stress/strain redistributions around borehole under 

rotary-percussive drilling conditions  

Subtask 2.4 Develop criteria and algorithms for rock crushing, damage, and 

fracturing, as well as their effects on rock properties 

About Cuttings transport: 

Subtask 2.5 Develop constitutive models to describe cuttings transport as a 

Newtonian/non-Newtonian laminar flow 

Subtask 2.6 Develop constitutive models for non-Newtonian turbulent flow in 

annulus 

 

Task 3 Numerical Modeling of PD processes 

Subtask 3.1 Evaluate state-of-art approaches such as FEM and DEM codes 

About rock behavior: 

Subtask 3.2 Evaluate and test elastic stress wave with FLAC3D, investigate the 

possibility of describing moving boundary and damage 

accumulation in FLAC3D elements 

Subtask 3.3 Calculate poroelastic and elastoplastic stress distributions around a 

static drilling wellbore, and describe damages and update rock 

properties with number of impacts 
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Subtask 3.4 Investigate factors affecting ROP such as Weight on Bit (WOB), 

Uniaxial Compressive Strength (UCS), RPM, etc, and compare 

results with analytical solutions 

About Cuttings transport: 

Subtask 3.6  With PFC3D, analyze cuttings transport as a Newtonian/Non-

Newtonian fluid flowing laminarly with constant circulation rate 

and debris volume  

Subtask 3.7 Analyze cuttings transport as a Non-Newtonian fluid flowing 

turbulently  

Subtask 3.8 Investigate factors affecting mud circulation such as density, 

viscosity, velocity, drilling equip geometry, etc, and compare 

results with analytical solutions 

Subtask 3.9 Couple drilling process and cuttings transport models 

 

Task 4 Full-scale laboratory testing and model validation 

Task 5 Develop graphical display and deliver the final report 

 

2.2 Schedule of the Tasks 

The time schedule for the above tasks is laid out in Table 2-1.  Most tasks are completed 

on schedule.  Technology review has been finished within the first quarter of 2004, 

followed by the start of analytical modeling studies where the conceptual physical model 

has been developed.  Based on an intensive review of current numerical tools and the 

conceptual model, numerical modeling efforts have been carried out with aid of 

FLAC3D.  After nine months of development, the prototype of rock model and cuttings 

transport model has been completed.  In order to validate the theoretical models, the lab 

tests have been scheduled at the beginning of 2005.  However, a delay in experiment 

setup and problems in the pretests have postponed the tests to the second quarter of the 

year.  Meanwhile, TerraTek has provided some previous single impact tests with 

Carthage Marble and Crab Orchard Sandstone so that we could start the model 

calibrations as early as possible.  After simulating single impact and full scale laboratory 

tests, a final report has been submitted, as well as the drilling model developed.
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Table 2-1.  Schedule for Tasks Carried out for DOE Percussion Drilling 
 

Year of 2004

ID Task Name
1 Technolgoy Review
2 Review  hammer drilling in petroleum

industries
3 Review  hammer drilling in other

industries and modeling efforts
4 Review  cuttings transport
5 Review  failure criterion and damage

mechanics
6 Analytical Modeling Effort
7 Develop a conceptual physical model

for rock, bit, and debris f low
8 Review  and develop analytical

approach for cuttings transport
9 Develop analytical model for rock

stress, failure and damage
10 Numerical Modeling Effort
11 Investigate FLAC3D capacities,

analyze elastic w ave propagation
12 Analyze PFC3D capacities, describe

cuttings transport w ith constant mud
flow ing rate

13 Calculate elastoplastic stresses
around a drilling w ellbore, update rock
damages w ith drilling progress

14 Study the sensitivity of cuttings
transport

15 Laboratory Tests and Model Verificatio
16 Single Impact Tests
17 Fluid Hammer Drilling Tests
18 Data Processing
19 Model Verif ications
20 Final Report and Deliveries

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 1st Qu

Year of 2005



 17

 

3 LITERATURE REVIEWS 
Hard rock regions in the US include, but are not limited to, the Rockies, Tuscaloosa 

trend, Anadarko basin, Cretaceous limestones, several areas in Texas, as well as deep 

Gulf of Mexico formations; worldwide interest include Bolivia, Colombia, Egypt, 

Argentina, Kazakhstan, South East Asia, and Oman.  The estimated yearly cost to drill 

hard rock in the US is $1,200 MM. Potential savings of $200MM to $600MM are 

possible if the penetration rate in hard rock is doubled with the assumption that bit life is 

reasonable (Tibbitts et al., 2002). 

 

3.1 History of percussion drilling in oil industry 

Developed by the Chinese more than 4000 years ago, percussion drilling is basically the 

raising and dropping of heavy piercing tools to cut and loosen earth materials.  The 

Chinese used a cutting head secured to bamboo rods, that were linked together to drill to 

depths of 3000 feet (915m). The raising and dropping of the bamboo drill string allowed 

it to impact and fracture the less dense rock formations.  It was reported to often take two 

to three generations of workers to complete large wells (Treadway, C., 1997).  

 

In 1859 at Titusville, Pennsylvania, Colonel F. L. Drake completed the first oil well using 

a cable tool percussion-type machine.  One of the earliest reports of percussion drilling 

technique occurred in 1949 (Harpst and Davis, 1949).   Since then different terms have 

been used, such as downhole hammer, percussion hammer, Down-The-Hole hammer, 

percussive drill, percussive-rotary drill, etc.  

 

Major developments and research in percussion drilling have been reported between the 

1950s and 1960s (Wanamaker, 1951; Faihust and Lacabanne, 1956; Topanelian, 1958; 

Fish, 1961; Simon, 1964; Hartman, 1966; McGregor, 1967).  Significant gains in 

understanding the percussive mechanism have been achieved in lab.  Some single-well 

applications have been reported in oilfields for the purpose of demonstrating the 

effectiveness of percussion drilling (Smith and Kopczynksi, 1961; Bates, 1964). 
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Mainly because of frequent mechanical failures, poor understanding with regard to the 

control of drilling operations, and economical uncertainties, a wide application of 

hammer drilling technology to oilfields was not reported until the 1980s.  In 1987, Pratt 

reported that air hammers were tested on 27 wells in Alberta and British Columbia.  

Average time to total depth for recent air/mud drilled wells at Jumping Pound has been 

80 days (best 66 days), compared to the record mud-drilled well which took 103 days.  

Whiteley and England (1986) also showed the field applications of air hammer in the 

Arkoma basin, which has significantly improved air drilling operations including a large 

increase in ROP, improved hole geometry, reduced drillstring stresses, and a substantial 

reduction in cost per foot. 

 

Since the 1990s, oil wells have been drilled deeper and deeper, and consequently, with 

increasing depth, the rocks become harder and harder.  An hydraulic hammer or water 

hammer has been developed to accommodate these new challenges and efficient 

mechanical designs have been achieved (Kong et al, 1996; Giles et al, 2001; Tibbitts et 

al, 2002). These designs, however, are still in pre-field stage. 

 

Throughout its history, theoretical development of percussion drilling technology has 

relatively lagged behind, compared to its improvement in mechanical designs.  This 

phenomenon is not uncommon in the drilling industry as the integrated process of rock 

drilling involves so many disciplines and complicated physics that modeling it rigorously 

faces prohibitive theoretical challenges.   

 

3.2 Why percussive drilling?  

3.2.1 Pros 

It has been widely recognized that percussion drilling (even without rotary) can result in 

penetration faster than conventional means such as rotary drill or diamond drill, 

especially in hard formations such as siliceous granite, sandstone, limestone, dolomite, 

etc (Whiteley and England, 1986; Pratt, 1987).  With the same rotation and WOB the 

percussive-rotary method is 7.3 times faster than the conventional rotary method in a 
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medium-hard granite, while at the best operational conditions for both methods, 

percussive-rotary has a 2.3 times advantage in ROP over the rotary (Melamed, 2000). 

 

This advantage is mainly due to the effects of frequent blows and high impact loads 

through bit teeth, as well as chipping of rock from a clean surface with the bit rotation.  

Other advantages of percussion drilling are: 

• Static and lower WOB. For example, ROP of 3.3m/h was achieved with the 83/4 

inch bit when WOB is 4.5 tons.  While in rotary drilling mode, 18.5 tons of WOB 

is needed to achieve the same ROP (Melamed, 2000); 

• Less contact time with rock, only one or two percent of total operational drilling 

time (Bates, 1965; Melamed et al, 2000), which leads to less abrasion of the bit 

and therefore a longer bit life;  

• Hammering force reduces the use of other bottomhole assembly; 

• Less hole deviation and easier control of deviation problems for straight hole 

drilling, because the fracturing pattern of the bit tooth is arranged in a conical 

shape directed downward in line with the striking force; and, 

• Larger cuttings may be generated, giving a better representation for geological 

study. Meanwhile large-sized chips may lead to hole cleaning problems in the 

fast-drilled larger holes (Pratt, 1987). 

 

Some potential applications of percussion drilling have been proposed, such as: 

• The impact of the hammer also provides a steady seismic signal at the bottom of 

the hole by means of mechanical impact waves transmitted to the rock through 

the drill bit, and also by means of hydraulic pressure fluctuations in the borehole 

(Figure 5). Particular vibrational energy can be seen in the 10 to 20 kHz range, 

which has been found useful for acoustic wireline and logging while drilling 

tools. Such tools have been used to estimate porosity, elastic moduli of the rock, 

and synthetic seismograms for comparison with surface seismic data (Minear et 

al., 1996); 

• Hammer may be used as a steerable drilling device that provides down-hole 

rotation (Bui 1995); and, 



 20

• Impact energy may be exploited for down-hole electricity generation, down-hole 

high-pressure jet intensification, etc. 

 

Because of these attractions, it has been predicted that “…The combination of rotary and 

percussion-type drilling could make a frontal attack into the drilling technology and open 

a new era of drilling.” (Samuel, 1996) 

3.2.2 Cons 

On the other hand, inclusive overall results, risks in operation (such as mechanical 

failure), and economical uncertainties greatly jeopardize the acceptance of percussion 

drilling technology by operators, even though it has been a hot topic for both oil and gas 

drilling for a long time.  There are many unclear but critical issues yet to be solved, such 

as: 

• Unreliable estimation of optimized values for hammer type, number of blows, 

energy per blow (which is directly related to length of the stroke, area of piston, 

supplied pressure), etc.  The best ROP with acceptable economics lies more on 

the basis of field experience  rather than a convincing theory; 

• Hammer bits (cutters) may get balled and lose the ability to drill ahead; 

• Wellbore stability issues associated with excessive hammer energy, such as 

cavity creation in shale, wellbore collapse due to reaming or vibration; 

• Poor performance in shale and other soft rocks; 

• Severe vibration to the drill string and the rig structure; 

• Little field evidence of continuous operations of percussion hammers in oil 

industries; and, 

• No evidence of the performance in either directional, horizontal wells, slim hole 

drilling, or coiled tubing drilling. 

 

Therefore a wide acceptance of percussion drilling may not come until these critical 

issues have been addressed so that more confidence can be gained. 

 



 21

3.3 How does it work?  

In rotary drilling, bit rotation produces both impact and shearing forces, which may result 

in two types of rock failures (see Figure 3-1): crushing because of an axial thrust from the 

weight on bit (WOB), and fracturing because of shear cutting force.   

Figure 3-1.  Rock defragmentation in rotary and percussion drillings 
 
 

Without bit rotation, rock damages after bit-rock impact in percussive drilling are carried 

out in several stages (White, 1969). At first, the force developed between the bit inserts 

and the rock builds slowly, and gradually the surface irregularities are crushed and 

compacted.  Then a rapid increase of the force starts, and subsurface cracks develop in 

the rock radiating out from the lines of stress concentration at the outer boundaries of the 

bit inserts. Two main cracks form along a narrow wedge in the rock, which is then 

crushed and compacted, and the force rises less rapidly.  The crushed zone may extend to 

a depth several times greater than the actual depth of bit penetration (Faihust and 

Lacabanne, 1956).  Finally, large fragments are suddenly fractured out along a curved 

trajectory up to the surface adjacent to the crushed zone (i.e. in the form of flat 

conchoidal flakes).  As the side walls for the crushed wedge are removed, the force drops. 

A new rock surface is now available.  The process is repeated if failed rock is cleared 

efficiently from the impact surface. 

 

Because hammer blows can be delivered at a rate of 1500 to 3000 per minute while the 

longitudinal wave velocity in drill-steel is around 5200m/s (Roberts, 1981), loading force 
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on the rock oscillates dramatically, generated by the stress waves from both the initial 

blow and the reflected pulses along the drilling rod.  This leads to another possible 

important mechanism for rock failure during this type of drilling: rock fatigue due to 

cyclic loading.   

Figure 3-2.  Rock damage due to cyclic loadings (after Haimson, 1978) 
 

In general, it is clear for various rocks such as marble, limestone, sandstone, and granite 

that repetitive loading of any type can weaken rock strength and results in premature rock 

failure (e.g. Haimson, 1978).   In the uniaxial tension-compression loading, which is 

likely to be the case in percussion drilling during bit-rock interactions, the strength lost 

due to accumulated damage can be as high as 75 percent of uniaxial compressive strength 

(UCS).   This type of rock damage has not been systematically studied until the late 

1970s, when percussive drilling lost its attractions to the oil industry due to its high risks 

and uncertainties.   We believe, however, this is one of the fundamental mechanisms for 

rock damage during percussion drilling, and may explain why this type of drilling is 

much faster than traditional rotary drilling and that the rock to be drilled has already been 

weakened and more easily fractured due to the development of microfractures.  One goal 

of lab tests is to confirm this damage theory and verify the theoretical damage model 

developed in this project. 
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4 MODELING EFFORTS   
4.1 Analytical Approaches   

In order to model the sophisticated percussion drilling, significant simplifications and 

assumptions have been made.  Justifying such simplifications involves not only 

experimental confirmations, but also the introduction of some famous principles such as 

Saint-Venant’s principle. 

4.1.1 Saint-Venant’s Principle 

The principle of Saint-Venant allows us to simplify the solution of drilling dynamics by 

altering the boundary conditions while keeping the systems of applied forces statically 

equivalent.  If a system of forces, acting on a small portion of the surface of an elastic 

body, is replaced by another statically equivalent system of forces acting on the same 

portion of the surface, the redistribution of loading produces substantial changes in the 

stresses only in the immediate neighborhood of the loading.  The stresses are essentially 

the same in the part of the body which are at large distances in comparison with the linear 

dimension of the surface on which the forces are changed (Saada, 1974).   

4.1.2 Stress Calculations 

To lay down bases of analytical efforts to describe rock stresses under different loading 

conditions, i.e. both vertical periodic circular loading from axial hammer movement and 

shearing torsion from hammer rotation are considered, four types of loadings on a semi-

infinite isotropic elastic medium have been solved analytically: 

1) A point normal force acting on the surface of a semi-infinite solid; 

2) A uniform normal line loading on a part of surface of a semi-infinite solid; 

3) A uniform circular loading on the surface of a semi-infinite solid; and, 

4) A tangential point loading on the surface of a semi-infinite solid. 

 

The analytical equations developed for stress profile for each above case are listed in the 

report 41999R04.doc.  The summaries are plotted in the following figures. 
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Figure 4-1.  Analytical solutions for point loading on a half-infinite elastic medium 

 

 

 
Figure 4-2.  Rock vertical displacement upon circular uniform loading 
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Figure 4-3．Contour plot of shear stress xz for point shearing 
 

4.1.3 Failure Criteria 

Three rock failure criteria are applied.  Failure can occur due to 1) excessive compressive 

strain; 2) excessive plastic shear strain; 3) excessive tensile stress.  The rock is assumed 

to completely lose its ability to support further loading after failure.  

 

Compressive failure 

A critical compressive strain is proposed to describe when rock fails due to excessive 

compressional strain in loading direction: 

zzz εε >  (4-1) 

where εzz is calculated compressional strain in loading direction, and zε is the critical 

strain value determined from lab testing.  

 

Shear failure 

For plastic shear strain failure, 

ps
ps εε >  (4-2) 

where εps is calculated plastic shear strain and psε  is determined from lab testing.   
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Tensile failure 

For tensile failure,  

Tσσ >1  (4-3) 

where σ1 is the maximum principal stress and σT is the critical tensile strength 

determined from lab testing or suitable correlations. This type of failure most likely 

occurs during bit retreat when the compressive stress wave is reflected in tension, a 

significant case if there is not enough Bottom Hole Pressure (BHP), such as in drilling 

with an air hammer.  

 

Fatigue/Damage model 

At the end of each loading/unloading cycle, both rock cohesive strength and tensile 

strength will be updated based on applied rock damage model, providing the peak loading 

stress reaches 75 percent of rock peak strength.  The algorithm is derived from the work 

Ewy et al. has developed (Ewy et al., 2004): 

y = axb (4-4) 

where x is number of cycles, and y is the ratio of rock peak strength to initial strength.  It 

should be noted that the two coefficients determined by lab tests vary from different types 

of rocks.  

 

4.1.4 Forces on Cuttings in Annulus 

Extensive attentions have been paid on mud flow in 

annulus because it is crucial to effectively clean drilled 

debris and continue the drilling processes.  Due to the 

complexity of mud flow and mud properties, however, 

most approaches are within continuum scope, i.e. they are 

assuming mud is a continuous fluid in which solid 

particles have no impact on its flow behavior and there is 

no interaction among these solid particles.   The unique 

aspect of this research is coupling fluid dynamics with 
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particle mechanics so that not only macroscopic fluid behavior, but the effect of solid 

particles on mud flow at microscopic levels, can be described (either as Newtonian, Non-

Newtonian, laminar or turbulent flow). 

 

A particle suspended in a fluid is subjected to a number of hydrodynamic forces, such as 

drag force induced by fluid viscosity and pressure difference, buoyancy force, Basset 

force, etc.   

 

Drag force 

Figure 4-4.  Drag coefficient with Reynolds number for a spherical particle 
 

The general drag force equation reads: 

( )2

2
1

pzDD vvACF −= ρ  (4-5) 

where ρ is mud density, A is the cross section of cutting particles in the flow direction,  

and CD is drag coefficient that represents a part of the kinetic energy to overcome the drag 

force.  It can be calculated analytically if particle Reynolds number, defined as 
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where dp is particle diameter.  For the cases such as turbulent flow and non-spherical 

particle shapes, empirical estimates for the drag coefficient can be obtained (Chien, 

1992).  Relationship between drag coefficient and Reynolds number for a spherical 

particle in a Newtonian fluid is plotted in Figure 26.  When flow is very slow, the force is 

also known as Stoke’s force, calculated by 

( )pzD vvrF −= πµ6  (4-7) 

Buoyancy force 

With consideration of gravity force, the buoyancy force on a spherical particle that results 

from submerged particle volume in fluid can be  

3)(
6 pflPnet gRF ρρπ

−=  (4-8) 

Traditionally, due to the limitation of continuum theory, an average particle radius is 

taken for calculation.  With aid of particle mechanics, each particle or cluster of particles 

can have its own properties such as diameter, shape, density, etc., which results in 

different force magnitudes (and therefore particle behaviors). 

Basset force 

Basset force is an unsteady force on a particle due to the velocity difference between 

particle and fluid. The instantaneous fluid velocity field, and therefore the shear stress 

acting on the particle, depends on the “history” leading to the current situation.   It is 

especially important for the initial stage of particle movement when particles are 

accelerated from stationary state.  However, the numerical complexity involved to derive 

the force is so prohibitive that usually it is neglected for most biphasic flow models.  In 

this research it is neglected as it is less important compared to other forces. 

 

There are some other forces resulting from interactions between fluid and particles, such 

as Saffman lift force that is due to the velocity shear between adjacent fluid layers or the 

wall effect, and Magnus force that is due to particle rotation.  Because of their smaller 

magnitude comparing to the drag force discussed above, e.g. Saffman life force is about 
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an order of magnitude smaller than the drag force when the particles are more than one to 

two particle diameters from the wall. These are not considered in this project. 

 

In the above calculations, fluid velocity needs to be determined depending on fluid type 

(Newtonian or Non-Newtonian) and flow regime (laminar or turbulent).  For laminar 

Newtonian flow, it can be calculated as follows: 

• Axial flow along the cuttings transport direction (Wilson, 2001) 
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Figure 4-5. Velocity profile of axial flow in annulus for Newtonian fluid flow 

 

• Circumferential flow perpendicular to the transport direction 
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where RB is radius of wellbore, RP is radius of drillpipe, r is the radial distance of 

particle from center axis, µ is mud dynamic viscosity, ω is angular rotation speed 

of drillpipe, and dPf/dz is axial frictional pressure gradient.  Based on Hagen-

Poiseuille law, the frictional pressure drop along the annulus for a Newtonian 

laminar flow can be obtained  
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where zv  is mean axial flow rate.  

 

The axial and circumferential velocity fields can be obtained independently of each other 

despite the nonlinearity of the Navier-Stokes equations. This decoupling occurs because 

the non-linear convective terms in the original momentum equations identically vanish 

due to the assumption of laminar Newtonian flow. Thus, changes in rotation rate will not 

affect properties in axial direction.  Figure 4-7 summarizes the flow chart to calculate 

drag coefficient.  

 

 
Figure 4-6. Flow chart for drag coefficient calculation 
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4.1.5 Conceptual Model 

As a highlight of the analytical modeling efforts, a conceptual model is developed to 

serve as a basis for further numerical investigations (see Figure 4-7).   In order to 

simplify the complicated drilling processes, a list of simplifications are made. 

 

1) The studied areas are 10 times the bit diameter (e.g. Db = 0.216m, or 8.5″) up 

along the wellbore for cuttings transport and elastic wave propagation 

2.16×2.16m2 or 85″×85″) below the drilling bit for rock damage; the diameter of 

drilled hole equals that of the drillbit. 

2) During percussion drilling, three main processes are involved: 

a) Drillbit penetration with compression, rotation and percussion 

b) Rock response with stress propagation and damage accumulation 

c) Debris transportation inside the annulus after disintegrated from rock 

Three damage/failure mechanisms are focused: 

a) Rock crushing by compressive bit load 

b) Rock fracturing by both shearing and tensile forces 

c) Rock fatigue by repetitive compression-tension type of loading  

3) Drillpipe is in vertical straight hole with depth up to 3048m (10,000 ft) 

4) For drillbit 

a) Drilling bit head is flat, and contacts consistently with the rock while rotating, 

compressing, and oscillating   

b) No cutter wear is considered (i.e. assume the cutter properties are not 

changed with drilling progress) 

c) Magnitude of bit thrust, frequency of bit oscillation, and WOB are all known 

variables from manufacturer 

5) For drilling fluid 

a) Mud is a plastic fluid (or non-Newtonian such as Bingham fluid) that 

becomes less viscous when it flows inside the annulus and sheared by drilling 

pipe rotation.  Both laminar and turbulent flow patterns are to be investigated, 

based on Reynolds number (< 2000) 
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b) The volume of debris, mud flowing rate and viscosity are known even though 

the size and shape may vary 

c) Most debris are non-spherical, irregular and of various size while some flakes 

have different ratios of thickness to diameter 

d) Debris concentration in the mud is ≤ five percent 

e) Mud is strong enough to hold and carry the specified amount of cuttings in 

the annulus in both flowing and static conditions, and transport efficiency ≥ 
50 percent  

f) No mud cake is formed; mud has no communication with formation water 

6) Borehole stability and fatigue of drilling equipment are not considered 
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Figure 4-7. Conceptual model for percussion drilling 
 

 

4.2 Numerical Modeling 

To numerically investigate the drilling processes, three steps have been taken.   First is to 

select and confirm the best numerical candidates, applying them to study simple cases.  

For rock model, 1D simulation of a column of rock elements is developed to study the 

effects of material models, loading patterns, boundary conditions, and dynamic features 

on rock breakage.  The second step involves cuttings transport where the laminar 
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Newtonian flow with uniform spherical particles is investigated in the annulus.  Finally, 

develop a sophisticated 3D dynamic simulation for a rock model and turbulent flow with 

non-spherical, non-uniform particles for cuttings transport.  

4.2.1 Selection and Confirmation of Numerical Tools 

We have evaluated different FEM software, such as ABAQUS and FLAC3D for rock 

model, and particle flowing codes PFC3D, FLUENT, HUBS for cuttings transport.  After 

reviews, FLAC3D and PFC3D are selected for this project.  Two sets of comparisons are 

carried out to compare the numerical results by FLAC3D with the analytical solutions 

discussed in Section 4.1.2.   

 

Point shear traction on the surface of a semi-infinite half-space 

A horizontal shear load of 10N is applied at the center point on top of a cubic model. 

Cylindrical or cubical types of elements are used.  For the cubical model with 71424 

zones, the analytical results agree with the numerical results very well 

Figure 4-8).   

 

  Cylindrical model Cubical model 
  SI units field units SI units field units 
Geometry          
Height 2,00 m 6,56 ft 5,00 m 16,40 ft 
Length 4,00 m 13,12 ft 20,00 m 65,62 ft 
FLAC3D properties             
zone command brick      brick      
# of zones 16000      71424      
volume of one zone 0,001 m³ 0,04 ft³ 0,037 m³ 1,31 ft³ 
boundary conditions bottom z fixed      bottom x,y,z fixed      
Model elastic      elastic      
bulk modulus 20 Gpa 2,90E+06 PSI 20 Gpa 2,90E+06 PSI
shear modulus 12 Gpa 1,70E+06 PSI 12 Gpa 1,70E+06 PSI
shear point load 10 N 2,2 lbf 10 N 2,2 lbf 

Table 4-1.  Data for FLAC3D simulations of a surface load acting on a half-space medium 
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Figure 4-8. Comparison of analytical and numerical stress solutions for point shear load 

 

 

Figure 4-9. Comparison of analytical and numerical stress solutions for distributed shear load 
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Distributed shear traction (torsion) over a circular area 

Shear load is linearly distributed in x, y, z directions.  A good match between the 

analytical and numerical solutions can be seen in Figure 4-9, where the measured stresses 

in x-, y- and z-directions are plotted against the analytical solution. 

 
After confidence is gained through the comparison between the analytical and the 

numerical solutions, we have simulated the rock breakage for one column of rock and 3D 

wellbore situation. 

4.2.2 Rock Material Models  

Three types of material models are tested, including Elastic model, Mohr-Coulomb 

model, and the Strain Softening model. The results are plotted in Figure 4-10.  Both the 

Elastic model and the Mohr-Coulomb (MC) perfect plastic model underestimate rock 

deformation after loading stress reaches rock peak strength.  This leads to overestimation 

of a failed element number when strain-based failure criteria are applied.  Therefore, the 

Strain Softening model is used in this research because of its closer approximation to 

reality. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-10.  Rock Material Models: elastic, MC perfect plastic, MC strain softening 
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4.2.3 1D Simulation of Rock Breakage 

The flow chart of simulation is described in Figure 4-11.  Starting from mesh 

construction and selection of a material model, boundary conditions are applied: bottom 

of the model is fixed, the laterals are set as either free or confined, and vertical load 

applied directly on the top.  After n timesteps, failure tests are carried out for each 

element.  If any failed zones exist, they will be deleted and loading stress will move to 

the element on top of rock column. Otherwise, further n timesteps are executed. The 

program stops when the bottom of rock is reached or the total timesteps set at the 

beginning are met. 

 

 
Figure 4-11.  Flow chart of 1D simulation 
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Figure 4-12 illustrates how the bit advances during six percussive impacts.  The number 

of timesteps at which the model checks and updates the failed element(s) is shown to be 

critical. Less timesteps lead to larger unbalanced force and therefore longer runtime, 

while bigger ones result in exaggerated failure judgment, and consequently the speed of 

failure progress may vary.  Appropriate value for timesteps should minimize unbalanced 

force while maximizing running speed.  Another interesting phenomenon is that, despite 

the compressional nature of loading stress at the top, there are some zones that underwent 

tensile failure during simulation   This is mainly because of the lateral expansion (i.e. 

extension) when longitudinal loading direction is under compression.  Nevertheless, 

when simulation is carried out with confining stress in lateral directions (as little as less 

than 1MPa), there is no more tensile failure.   Figure 4-13 plots the displacement of each 

element after each impact.  Discontinuity in the displacement curves and a jump in the 

ROP curve indicate the failure of the element and its subsequent removal.  

 
 

 
Figure 4-12.  Dynamic modeling rock breakage for 1column rock model 
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Figure 4-13.  Rock penetration for 1column rock model 

 

 

4.2.4 3D Dynamic Simulation of Rock Breakage 

To investigate rock deformation and failure during percussion drilling, a 3D rock 

mechanics model has been developed with aid of FLAC3D.  The implementation 

includes a Mohr-Coulomb type material model with strain-softening behavior, a Rayleigh 

damping feature to dissipate excessive oscillation energy, three failure models to describe 

when and how rock experiences failure, and a fatigue/damage algorithm to update rock 

properties (e.g. cohesive strength and tensile strength) due to cyclic loading. 

 

Configuration 

As shown in Figure 4-14, the dimension of the 3D model is 1.5m (length) ×1.5m (width) 

×3.0m (height).  There is a 0.5m deep drilled borehole with diameter of 17.8cm.  The 

boundary conditions for the rock block include a confining stress of 12.5MPa, an 

overburden stress of 15MPa, and a fixed bottom condition. Table 4-2 lists the details of 

these inputs. 
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Figure 4-14.  Configuration of 3D dynamic rock modeling 
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Table 4-2. Input parameters for model configuration 
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Rock Material Model 

A Cascade sandstone with cohesive strength of 10.41MPa (1510psi) and friction angle of 30 degrees is selected for initial 3D 

simulations.   The rock is modeled as a Mohr-Coulomb type with strain-softening behavior.  Under confining stress of 18.3MPa 

(2654psi) at the depth of 1000m, the rock has 7.66GPa and 5.75GPa in bulk and shear moduli, respectively. Other rock properties are 

described in Table 4-3.  Those parameters are derived from a series of stress-strain curve matches.   

 

Fatigue 
Coefficients 

Rock 
Density 

Bulk 
modulus 

Shear 
modulus 

Cohesive 
Strength 

Friction 
Angle 

Tensile 
Strength

Critical 
Strain  

Critical 
Plastic 
Shear 
Strain 

Critical 
tensile 
strain a b 

2.2g/cm3 7.66GPa 5.75GPa 10.41MPa 1.9MPa 

137lb/ft3 1.17Mpsi 0.70Mpsi 1510psi 

30 

275psi 

0.12 0.06 0.0005 0.9987 -0.0313 

Table 4-3. Rock properties used in the model  
 
 
Flowchart 

The flowchart of 3D numerical simulation is described in Figure 4-15.  There are five steps before calculation of stress wave 

propagation in the rock: define grid meshes, choose material model, describe boundary conditions, input stress waves, and test and 

determine rock damping properties.    

 

Stress wave input is defined as a sine wave with a peak value of impact velocity and an impact span (or frequency of impact). After 

impact, the bit will retreat and velocity input is removed. The impact surface will oscillate after that. 
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After the model reaches mechanical equilibrium, with input of rock properties and 

boundary conditions, the stress wave starts to impose on the impact surface, i.e. the rock 

elements adjacent to the hole bottom.  After a few steps of loading, the program will 

determine whether any rock failure occurs based on the applied failure criteria.  If there is 

no rock failure, and the loaded element is not the last one (i.e. at the bottom of the rock 

model), a few more steps of loading will be executed.  However, if there is any failure, 

possibly due to excessive compression, shear, or tension, the element(s) will be deleted, 

as well as the other elements at the same depth.  Meanwhile, if the element(s) have failed 

during impact, the loading stress wave will immediately impose on the next level of 

stable elements adjacent to the failed ones; if the element(s) have failed during bit retreat 

(mainly because of excessive tensile deformation), there is no change of boundary 

conditions. 

 

After a cycle of impact, including bit-rock contact and bit retreat, the program will update 

the remaining stable rock elements based on fatigue/damage algorithm applied.  Basically 

both cohesive and tensile strengths will decrease with number of cycles (Fig. 8). Unless it 

is the end of a series of impacts, the loading of the next wave cycle will continue. 

 

The program stops for two reasons: when all elements are drilled out, and when all cycles 

of loading waves have been applied. For each case, four outputs will be generated: a ROP 

value, a plot of bit advancement, a history of rock failure, and a history of rock 

fatigue/damage.  The rock failure history describes when and how many rock elements 

(or grid units) have failed, and what type of failure they have experienced while rock 

fatigue/damage history demonstrates when and how many rock elements have been 

damaged during which impact. 
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Figure 4-15.  Flowchart for 3D dynamic simulation 
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Dynamic Damping 

A Reyleigh damping feature is applied.  As indicated in FLAC3D menu (Optional 

Features), the two parameters required for this algorithm are a critical wave frequency 

defining how fast rock responds to wave disturbance, and a damping ratio describing how 

much range of the frequency can be efficiently damped.  Because the critical frequency is 

determined by rock mass (M) and modulus (K), i.e. MKf /∝ , each model used in the 

simulation needs to run some tests to determine the values of the frequency (fc) and the 

ratio (Ra). 

 

Figure 4-16, Figure 4-17, and Figure 4-18 describe the selections of damping magnitude 

on stress wave propagation.  With decrease of damping (from 60 percent of fc, 20 percent 

of fc, to no damping), the reflected waves after the first impact are quite different.  The 

less damping applied the larger amount of the wave energy reflected. 

 

Figure 4-16. Rock vertical velocity at the impact surface (large damping, fc=10000, Ra=0.6) 

8m/s 

3×10-4s 



 45

Figure 4-17. Rock vertical velocity at the impact surface (medium damping, fc=10000, Ra=0.2) 
 

Figure 4-18 Rock vertical velocity at the impact surface (no damping) 

8m/s

3×10-4sec

3×10-4sec
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Fatigue/Damage Model 

The plot of rock damage under the bit vs. cycles is shown in Figure 4-19.  In general, 

rock damage, in terms of strength reduction, evolves with number of cycles.  There is a 

significant damage development during the first cycle.  This attributes to a strain-

weakening phenomenon where rock experiences plastic deformation leading to the 

development of microfractures.  Even though cyclic fatigue contributes partly to rock 

defragmentation during percussion drilling, strain-weakening deformation may play a 

more important role in terms of strength reduction.  

 

 
Figure 4-19.  Development of damage during cyclic impacts 

 

Dynamic Stress Propagation in the Rock  

Figure 4-20 and Figure 4-21 show how rock vertical stresses in the loading direction 

evolve.  Initially the rock is under 18.3MPa confining stress and 22MPa overburden 

stress.  Mud pressure at the wellbore bottom is around 10Mpa, which is lower than in-situ 

stresses.  At the end of bit-rock impact, the rock compressive stress (σzz) reaches the 

maximum of about 100MPa (Figure 4-20).  During the loading, there are two layers of 

elements (total 0.1m) that have failed and therefore been deleted from the simulation, 

which results in two abrupt changes in rock velocity profiles (the black and red lines in 
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Figure 4-21).  After each elimination, the impact is immediately passed to the next 

available rock element adjacent to the failed ones. As soon as bit starts retreat, stress 

disturbation created by hammer impact starts to disappear gradually (Figure 4-21).   

 

The changes of rock shear stresses (τxz) are more complicated than those of compressive 

stress (σzz).  Initial shear stress, in the magnitude of 3MPa, is concentrated around the 

corner of the wellbore bottom, in a clockwise direction.  If the impact continues, the 

direction of τxz completely changes to counter-clockwise and increases to 16.7MPa 

(Figure 4-22). After bit starts to retreat, the direction of τxz recovers back and decreases to 

around 14.4MPa.  The direction-change cycle tends to twist the rock and may damage it 

to some extent. 

 

 

 
Figure 4-20.  Rock vertical stress in the loading direction at the end of impact (unit: Pa) 
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Figure 4-21.  Rock vertical stress (σzz) in the loading direction at the end of bit retreat (unit: Pa) 

 

 
Figure 4-22. Rock shear stress (τxz) at the end of impact (unit: Pa) 
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Damage Development in the Rock with Cyclic Loading 

Five cycles are imposed to investigate the initiation and accumulation of rock damage.  

The velocity profile of at the rock at the hole bottom is plotted in Figure 4-23. 

 

 
Figure 4-23.  Velocity profile of the first impacted element without bit advancement (unit: m/s) 

 

The numerical program developed in this research can describe propagation of rock 

damage and fatigue with number of cycles in both graphs (Figure 4-24 to Figure 4-28) 

and text document (Figure 4-29).  As shown from Figure 4-24 to Figure 4-28, the damage 

has clearly propagated into deeper rock elements with more impact cycles.  The text 

document describes which element has experienced or experiences how many fatigue 

cycles, and the remaining strength after these cycles.  For example, zone #6, which is 

directly below the impact, has experienced five effective cycles. i.e., for five times, rock 

compressive stress (σzz) has exceeded 75 percent of rock compressive strength at the 

current level of confining stress (18.3MPa).  Even though various elements have 

experienced the same number of fatigue cycles, e.g. zone #6 and zone #7, their cohesive 

strengths may be different, as they may also be in different stages of strain-weakening.  

Figure 4-29 summarizes the damage propagation in terms of number of elements and 
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their depth.  Both of them follow the same trend, which means the damage progresses 

vertically and smoothly.  For the rock model studied, the elements as deep as 0.35m 

below the impact surface are damaged to some extent after five impacts.   

 

 
Figure 4-24. Number of damaged rock elements after the 1st impact 

 

 
Figure 4-25. Number of damaged rock elements after the 2nd impact  
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Figure 4-26. Number of damaged rock elements after 3rd impact 

 

 

 
Figure 4-27. Number of damaged rock elements after 4th impact 
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Figure 4-28. Number of damaged rock elements after 5th impact 

 

 
Figure 4-29.  History for each fatigued/damaged element without bit advancement 
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Bit Penetration and Pore Pressure 

With rock failure being removed from the model, the velocity profile of elements close to 

the impact surface is plotted in Figure 4-30.  The discontinuity of curves is due to a lack 

of available data after the removal of the failed elements.  The sudden jump of the 

velocity profiles accounts for the effect that after the failed element is removed, the 

hammer velocity immediately is imposed on the next adjacent element since the cuttings 

removal from the failed surface is assumed instantaneously.  The distribution of vertical 

stress (σzz) at the end of simulation is pictured in Figure 4-31.   

 

 
Figure 4-30.  Rock velocities close to the impact surface with bit advancement and mud pressure of 

10MPa (unit: m/s) 
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Figure 4-31. Distribution of rock vertical stress after bit advancement of 0.5m (unit: Pa) 

 

Effect of Bottom Hole Pressure (BHP) on Rate of Penetration is also investigated and 

plotted in Figure 4-32. Comparing to the blue line, where BHP is assumed to be as high 

as 10MPa, the pink line, which represents zero BHP (e.g. in the case of air hammer 

drilling), indicates a significant increase in bit advancement.  This agrees with experiment 

and field observations.  There are several speculations on the mechanisms behind this 

increase of ROP, such as effect loading stress is decreased as a result in the increase of 

BHP, higher confining stress around the rock results in higher rock compressive strength, 

or no compressing stress from drilling fluid allows rock to more easily deform in tension 

with bit retreat.  Usually rock tensile strength is much smaller (1/5 to 1/10 of rock 

compressive strength).  The failure histories for both drilling with BHP (i.e. 10MPa) and 

without BHP (i.e. air drilling) clearly reveal a significant amount of elements have failed 

in tension when bit retreats (after 3.0×10-4 sec) during the first wave impact. 
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Figure 4-32. Bit advancement with and without bottom hole pressure 

 

4.2.5 Numerical Simulation of Cuttings Transport 

 

Model Geometry 

Figure 4-33 demonstrates the generated model for drillpipe and annulus (transparent). 

Note that the cylindrical and spiral walls are plotted as wire frames consisting of multiple 

flat plates, while the geometry of the walls are formulated analytically in the PFC3D 

kernel, and are continuously curved.   

 

Figure 4-33. Drillpipe configuration in cuttings transportation 
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Cuttings Generation 

Particles are generated at the bottom of the wellbore in the three slots.  Different shapes 

of cuttings are generated, including spheres (1, 2, 4, 7 particles), plate (8 particles), 

cluster, clumps, or random shape.  They are summarized in Figure 4-34. Each of them 

can be created randomly within one of the three slots (Figure 4-35).   

 

Figure 4-34.  Different particles configurations in cuttings transport 
 

Figure 4-35.  Entry locations for cuttings 
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Parameter Sensitivity Studies 

 

There are numerous factors related to cuttings transport such as pump rate, fluid viscosity 

(currently Newtonian theology active), density, particle shape and mass, rotation rate, 

penetration rate, type of flow regime, etc.  We have studied the influence of pump rate 

and viscosity (cutt #68 and cutt #71) in this research. The details of these two simulations 

are listed in Table 4-4.   In cutt 68, almost no ability for cuttings transportation since a 

very low pump rate of 0.00063 m³/s (0.1673 gal/s) and low viscosity of 0.004 Pas (4 cp) 

was used.  The cuttings transport efficiency has been improved in simulation cutt 71, 

where fluid viscosity and pump rate are increased to 0.04 Pas (40 cp) and 0.006 m³/s 

(1.585 gal/s), respectively.  Different cutting colors, blue, red, and yellow, represent 

different entry slots (Figure 4-36).   

 

 
Figure 4-36. Particles behavior in the simulation cutt68 
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Table 4-4. Data used in parameter-sensitivity analysis 
 

GEOMETRY
well bore radius 0.108 m 4.25 in 0.108 m 4.25 in
well bore height 2.268 m 7.44 ft 2.268 m 7.44 ft
drill pipe radius 0.04445 m 1.75 in 0.04445 m 1.75 in
drill bit height 0.108 m 4.25 in 0.108 m 4.25 in
wall normal stiffness 2.00E+08 N/m 1.37E+07 lbf/ft 2.00E+08 N/m 1.37E+07 lbf/ft
wall shear stiffness 2.00E+08 N/m 1.37E+07 lbf/ft 2.00E+08 N/m 1.37E+07 lbf/ft
wall friction 0 0 0 0
number of slots 3 3 3 3
slot opening angle 40 ° 40 ° 40 ° 40 °
inner slot radius 0.081 m 3.19 in 0.081 m 3.19 in
well bore deviation 0 ° 0 ° 0 ° 0 °
FLUID
density 1497 kg/m³ 12.5 lb/gal 1497 kg/m³ 12.5 lb/gal
viscosity 0.004 Pa s 4 cp 0.04 Pa s 40 cp
rheology
CUTTINGS/PARTICLES
density 2650 kg/m³ 22.12 lb/gal 2650 kg/m³ 22.12 lb/gal
radius 0.0025 - 0.005 m 0.098 – 0.197 in 0.0025 - 0.005 m 0.098 – 0.197 in
ball normal stiffness 1.00E+08 N/m 6.85E+06 lbf/ft 1.00E+08 N/m 6.85E+06 lbf/ft
ball shear stiffness 1.00E+08 N/m 6.85E+06 lbf/ft 1.00E+08 N/m 6.85E+06 lbf/ft
ball friction coefficient 0 0 0 0
OPERATING CONDITIONS
pump rate 0.0006333 m³/s 0.1673 gal/s 0.006 m³/s 1.5850 gal/s
average fluid velocity within annulus 0.2054 m/s 0.6738 in/s 1.9456 m/s 6.3833 in/s
Reynolds number 4884 4884 4627 4627
assumed flow regime
rate of penetration 10 m/h 32.81 ft/h 10 m/h 32.81 ft/h
rotation rate 1.047 rad/s 10 rpm 1.047 rad/s 10 rpm

Cutt71 - vertical well bore, worst case #2
Field units

laminar laminar

Newtonian Newtonian

Cutt68 - vertical well bore, worst case #1
SI units Field units SI units
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Cases Studied  

Using the data input listed in Table 4-5, continuous cuttings generation has been achieved 

with PFC3D (Figure 4-37).  Note that different colors in the figure represent different 

ages of drilling cuttings with bit progression.  

Figure 4-37. Modeling cuttings transport with PFC3D 
 
Table 4-5.  Data for PFC3D simulations on cuttings transportation  
GEOMETRY SI units  field units 
well bore radius 0.108 m 4.25 in 
well bore height 2.268 m 7.44 ft 
drill pipe radius 0.04445 m 1.75 in 
drill bit height 0.108 m 4.25 in 
wall normal stiffness 2.00E+08 N/m 13.7E+06 lbf/ft 
wall shear stiffness 2.00E+08 N/m 13.7E+06 lbf/ft 
number of slots 3  3  
opening angle of slot 40 ° 40 ° 
inner radius of slot 0.081 m 3.19 in 
FLUID  
density 1497.00 kg/m³ 12.5 lb/gal 
viscosity 0.1 Pa s 100 cp 
rheology Newtonian  
CUTTINGS/PARTICLES  
density 2650.00 kg/m³ 22.12 lb/gal 
radius 0.0025 - 0.005 m 0.098 – 0.197 in 
ball normal stiffness 1.00E+08 N/m 6.85E+06 lbf/ft 
ball shear stiffness 1.00E+08 N/m 6.85E+06 lbf/ft 
OPERATING CONDITIONS  
pump rate 0.019 m³/s 5.02 gal/s 
flow regime laminar    
rate of penetration 10 m/h 32.81 ft/h 
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The efficiency of cuttings transport is directly visualized three-dimensionally and the 

effects of pipe rotation, particle entry speed, particle collisions, and mud circulation rate 

are investigated.   First, cuttings transport in a vertical well with slow pipe rotation is 

studied (Figure 4-38).  Compared to the situation where the pipe rotates much faster 

(Figure 4-39), the cuttings are less mixed and the axial flow is dominant in the slow pipe 

rotation case. This confirms that the rotation of the pipe mainly serves to mix the cuttings 

with mud into a homogenous fluid for efficient cuttings circulation.  Without enough 

entry speed, i.e. mud circulation rate, as shown in Figure 4-40, most cuttings will fall 

down to the bottom of the annulus after a short lift, due to the effect of gravity.   One big 

advantage of this simulation tool is to quantify, with the presence of pipe rotation, how 

efficient a mud circulation could be to remove drilling cuttings, and therefore to setup 

operation guidelines for field engineers. 

 

 

 
Figure 4-38.  Cuttings transport in a vertical well with slow pipe rotation and mud circulation 
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Figure 4-39. Cuttings transport in a vertical well with fast pipe rotation and mud circulation 

 

 
Figure 4-40. Inefficient cuttings transport due to slow mud circulation 
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5 FULL SCALE LAB TESTS   
The details of full scale lab tests can be found in the report 41999R07.doc.  In summary, 

the tests can be divided into two categories: single impact tests with single indentor and 

full-scale fluid hammer tests under field conditions.   

 

5.1 Rock Property Determinations 

Both Berea sandstone and Mancos shale are used as samples.  Their mechanical 

properties, including moduli, Poisson’s ratio, cohesive strength, friction angle, tensile 

strength, etc., are first determined from confined triaxial tests and Brazilian tests. 

 

5.2 Single Impact Tests   

While the samples in the impact tests are 12.7cm (diameter) by 10cm (depth), those in the 

hammer tests are 39.4cm (diameter) by 91.4cm (length).  For each impact test, three 

impacts are sequentially loaded at the same rock location to investigate rock response to 

repetitive loadings.  After each impact, crater depth and width are measured and rock 

debris is washed out to leave a clean rock surface for the next impact. Meanwhile, the 

displacement and force in the rod, as well as the force in the rock are recorded at high 

frequency levels of about 100 KHz.  Various pressure differences across the rock-

indentor interface (i.e. bore pressure minus pore pressure) are implemented to investigate 

the pressure effect on rock penetration.   

 

5.3 Full Scale Drilling Tests 

For hammer drilling tests, an industrial fluid hammer is used to drill both Berea 

sandstone and Mancos shale under both underbalanced and overbalanced conditions. The 

bottom hole pressure varies from 3.4MPa to 20.7MPa while pore pressure is controlled 

separately, varying from 0psi to 24.2MPa.   Water-based mud of 1.2g/cm3 density 

circulates fast enough to clear failed rocks at the hole bottom.  During the tests, Rate of 

Penetration is recorded continuously from one pressure condition to another. Cuttings are 

collected and analyzed after the tests. 
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6 MODEL VALIDATIONS   
6.1 Rock Property Determinations 

The material parameters for Berea sandstone used in the FLAC model are summarized in 

Table 6-1, including wave speed, impedance and constraint modulus, in both SI and field 

units.  This information is used to build the Berea sandstone model for the numerical 

simulation described in this section. Table 6-2 summarizes the elastic material parameters 

of the impacting steel anvil. 

 

The constraint modulus is defined as the stiffness, which determines the wave speed for 

uniaxial wave propagation.  It is given by 

EM
)21)(1(

1
νν

ν
−+

−
=  (6-1) 

where ν  is the Poisson ratio and E is the Young’s modulus of the material.  The specific 

impedance of the material is defined as the product of the density and wave speed. The 

transfer of energy at a material interface depends only on the ratio of the specific 

impedances of the two materials, i.e. the ratio of the specific impedances of the two 

materials on either side of the interface (ρ2v2/ρ1v1). For an incident wave propagating 

from a stiffer to a softer material the impedance ratio is less than one. In our specific case 

this value is equal to 0.12. For a wave approaching a stiffer material, the impedance ratio 

is greater than one. Again in our case, this value is equal to 8.33. 

 

We denote by tir AAA ,,  the displacement amplitudes of the reflected, incident and 

transmitted waves. It can be shown that the following relations are satisfied: 
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where αz=ρ2v2/ρ1v1.  These relations are shown in Figure 6-1. For very large impedance 

ratio’s, the reflected displacement wave has the same amplitude as the incoming wave, 
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but changes sign. For interfaces with very large impedance ratios, no energy is 

transmitted. 

 
Table 6-1. Material Parameters of Berea Sandstone  

 SI Units Field Units 

Bulk modulus  8.75E+03 MPa 1.27E+06 Psi 

Shear modulus  4.28E+03 MPa 6.21E+05 Psi 

Young’s modulus  1.10E+4 MPa 1.60E+06 Psi 

Poisson ratio 0.29  0.29  

Density  2.11E+03 kg/m3 0.00232 slug/inch3 

Constraint modulus  1.45E+4 MPa 2.10E+06 Psi 

Cohesive Strength 10.5 MPa 1535 Psi 

Friction Angle 43 degree 43 Degree 

Wave speed  2617.5 m/sec 103,051 inch/sec 

Impedance 5.52E+06 kg/m2 sec 239 slug/inch2 sec 

 
Table 6-2: Material Parameters of Impacting Steel Anvil  

 SI Units Field Units 

Bulk modulus  1.67E+5 MPa 24.2E+06 Psi 

Shear modulus  7.26E+4 MPa 10.5E+06 Psi 

Young’s modulus  1.90E+5 MPa 27.6E+06 Psi 

Poisson ratio 0.31  0.31  

Density  8.03E+03 kg/m^3 8.83E-03 slug/inch^3 

Constraint modulus  2.64E+5 MPa 38.3E+06 Psi 

Wave speed  5731.6 m/sec 225,653.1 inch/sec 

Impedance 4.60E+07 kg/m^2 sec 1990 slug/inch^2 sec 

 

 



 65

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Impedance Ratio

R
ef

le
ct

ed
 a

nd
 T

ra
ns

m
itt

ed
 D

is
pl

ac
em

en
t W

av
e

Reflected Wave
Transmitted Wave

 
Figure 6-1. Reflected and transmitted displacement waves in a layered elastic medium  

 

Similarly, for the stress amplitudes we have the relations correlating incident, transmitted 

and reflected stress waves given by 
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where zα denotes the impedance ratio. These dependences are shown in Figure 6-2.  

 

For the layered elastic medium with material parameters shown in Table 6-1 and Table 

6-2, the following values are obtained: 

 

Impedance ratio from stiff to soft material:       0.120 

Displacement amplitude ratio of reflected to incident wave:    0.786 

Displacement amplitude ratio of transmitted to incident wave:   1.790 
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Stress amplitude ratio of reflected to incident wave:    -0.786 

Stress amplitude ratio of transmitted to incident wave:    0.214 

 

Impedance ratio from soft to stiff material:       8.330 

Displacement amplitude ratio of reflected to incident wave:   -0.786 

Displacement amplitude ratio of transmitted to incident wave:   0.214 

Stress amplitude ratio of reflected to incident wave:     0.786 

Stress amplitude ratio of transmitted to incident wave:    1.790 
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Figure 6-2. Reflected and transmitted stress waves in a layered elastic medium  

 

Sandstone Plasticity and Failure  

 

Berea sandstone is described by an elastoplastic material model and an accumulated 

plastic strain dependent failure criteria when loaded in triaxial compression. During 

tensile loading, a critical tensile strength is implemented. The corresponding values for 

Berea sandstone are a critical tensile strength of 2.1 MPa (304.5 psi), cohesion of 10 MPa 

(1450 psi) and angle of friction equal to 43 degrees.   
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To validate the model we use the triaxial compression data experimentally and compare 

them to our numerical results. In particular, the numerical simulations use, in addition to 

an unconfined compression test, a lateral confinement of 10.34 MPa (1500 psi) and 20.68 

MPa (3000 psi). Similar to the experimental process, we first apply the confinement and 

subsequently increase the axial compression until the material fails in shear. Finally, a 

uniaxial tensile test is performed to verify the specified tensile strength.  

 

Figure 6-3 shows the principal stress differences versus the axial strains. The three graphs 

represent the unconfined compression and the two triaxial compression tests with lateral 

confinements of 10.34 MPa (1500 psi) and 20.68 MPa (3000 psi). This figure shows the 

increase in maximum and residual strengths with an increase in confinement pressure. 

The deformation accumulated during initial hydrostatic compression is not included, i.e. 

the measure of the axial strain is activated after completion of the initial hydrostatic 

compression.  

 

Figure 6-4 shows the principal stress differences versus volume changes for the same 

triaxial compression tests. Initially the material compacts; after the maximum strength is 

reached, the material fails and starts to dilate. Again, the volume change is measured after 

initial compaction during hydrostatic compression is completed.  

 

In Figure 6-5, the results of the triaxial tensile test are shown. The material reaches the 

imposed ultimate strength of 2.1 MPa (304.5 psi). Note that in tension the ultimate 

strength is reached, but no failure is available. The material keeps the maximum tensile 

strength no matter how much tensile load is actually applied.  
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Figure 6-3. Principal stress differences of Berea sandstone under different confinements.  

 

 
Figure 6-4. Principal stress differences versus volume changes for three triaxial compression tests. 
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Figure 6-5. Tensile stress versus tensile strain for Berea sandstone.   

 

6.2 Single Impact Simulation  

6.2.1 Experimental Layout 

The experimental impact tests were on rock samples 0.1334 m (5.25 inches) in diameter 

by 0.0921m (3.625 inches) in height with the impact occurring at a distance of 0.0333m 

(1.3125 inches) from the center of the rock ,see Figure 6-6.   

 

 
Figure 6-6. Top view of impacted Berea sandstone specimen 

 



 70

After a careful evaluation and verification phase we assume for the numerical model, for 

simplicity, that the impact load can be applied to the center of the specimen. The 

experimental equipment setup is shown schematically in Figure 6-7. The gap between the 

bottom of the gas piston and lower cylinder top is 7.62E-4 m (0.03 inches). The nitrogen 

gas pressure is held constant at 3.1 MPa (450 psi) before exhausting the bottom part of 

the gas cylinder to atmosphere through a 0.0254 m (1 inch) diameter orifice. The piston 

distance traveled before striking the rod anvil is 0.0127 m (0.50 inches) resulting in a 

calculated piston velocity of 12.32 m/sec (495 inch/sec) at contact with the anvil. 

 

0.50 travel

Travel + gap = 0.53in

Before Impact After Impact

0.50 travel

Travel + gap = 0.53in

Before Impact After Impact  
Figure 6-7. Schematic representation of test setup for impact on Berea sandstone 

 

6.2.2 Loading Patterns 

To simplify the simulation we do not attempt to model the physical impact mechanism in 

its entirety, but instead prefer to apply a sinusoidal shaped impact stress wave to the top 

surface of the striking cylindrical anvil. In the numerical model, shown schematically in 

Figure 6-8, diameter and length of the impacting rod are 0.0254 m (1 inch) and 0.4648 m 

(18.3 inches), respectively. The rock sample, enclosed in a cylindrical steel jacket, has a 

diameter of 0.1334 m (5.25 inches) and height of 0.0921m (3.625 inches). The front end 

of the anvil is shaped like a cylindrical cone.  
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Figure 6-8. Geometric layout of numerical model with symmetry taken into consideration 

 

We specify an applied stress history through the superposition of two half sine waves to 

best simulate the experimental impact wave measured by a sensor mounted on the steel 

anvil located 0.127 m (5 inches) below the impacted surface.  Figure 6-9 shows the 

compression and tensile waves, which are combined to provide the equivalent applied 

load in Figure 6-10. These results are shown as loads for better comparison with 

experimental data. The justification for combining two wave forms is that in addition to 

the principal applied pressure wave a secondary high frequency wave is generated in the 

anvil during impact loading. The experimental setup shown in Figure 6-7 also indicates 

that the pressure is maintained in the upper half of the pressure chamber. This implies 

that a residual pressure is maintained on the impacting anvil, which we assume to be 51.8 

MPa (7500 psi) and is shown in Figure 6-10 as a corresponding permanent load. 
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6.2.3 Numerical Models 

 

For the numerical model we assume a diameter of 0.0254 m (1 inch) for the striking 

anvil. We note that the physical anvil in the experiments does not have a constant 

diameter, about 70 percent of its length the diameter is (0.028575 m) 1.125 inches.  The 

diameter increases when approaching the top surface, while the impacting cone itself 

does have a semi-spherical surface, see Figure 6-7. The lengths of the modeled and 

physical impacting rod correspond and are equal to 0.4648 m (18.3 inches), measured 

from the bottom of the anvil to the top impacted surface. In the experiments, the local 

axial strain is measured 0.127m (5 inches) below the impacted surface and, assuming 

linear elastic behavior and homogenous deformation (constant strain over the entire 

cross-section), is converted into axial stresses and ultimately into an equivalent axial 

load.  

 
Figure 6-9. Compression and tensile waves applied to top surface of impacting rod 
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Figure 6-10. Resultant applied load obtained from superposition of compressive and tensile waves 

 

 

Reduced Model 

To optimize running time during the material model validation phase, a geometrically 

reduced model was developed. In this model, the rock sample has the same diameter as 

the impacting rod 0.0254 m (1 inch) and a total height of 0.092 m (3.625 inches).  The 

total length of the impacting rod is 0.4648 m (18.3 inches).  The bottom surface is fixed 

and no symmetry is used, i.e. the entire circular cylinder is modeled, as shown in Figure 

6-11.  Note that the stress waves travel down the steel rod and upon arrival at the steel-

rock interface will be in part reflected and in part transmitted. The transmitted wave 

propagates downward through the rock to be reflected at the bottom surface. Similarly, 

the wave reflected at the steel-rock interface will travel upward to be reflected at the now 

free top surface of the anvil. Therefore, it is evident, that at all times, a large number of 

waves travel up and down the structure, overlap and may amplify or reduce the 

amplitude. 
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The surface where the stress impulse is applied is free to move and can therefore be 

described by zero impedance ratio. The fixed surface, on the other hand, corresponds to 

an interface with infinite impedance ratio. No stress can be transmitted across an interface 

with a zero impedance ratio. It can be shown that the displacement of the boundary must 

be twice the displacement amplitude of the incident wave. The reflected stress wave has 

the same amplitude as the incident wave, but changes sign. If the incident wave is a 

compression wave, the transmitted wave will be tensile and vice versa.  

 

The boundary where all displacement components are fixed corresponds to an infinite 

impedance ratio. This implies that the stress at the boundary is twice the magnitude of the 

incident wave. The reflected wave has the same amplitude and sign as the incident wave. 

Obviously, all displacement components vanish. 

 

 
Figure 6-11. Geometric layout of reduced model 

 

Complete Model 

After the main material model parameters are determined and verified using the model in 

Figure 6-11, the model is modified to include the actual size of the impacted rock 

specimen. The dimensions of the rock sample in the physical test and in the numerical 
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simulation are a diameter of 0.1334m (5.25 inches) and a height of 0.0921m (3.625 

inches), see Figure 6-8. Consistent with the boundary conditions in the experimental 

setup, the rock sample is enclosed by a steel cylinder. Also, the vertical displacement of 

the bottom rock surface is fixed. To optimize the running time, symmetry conditions are 

taken into consideration and only half of the physical specimen is modeled.  

 

The length of the impacting rod is 0.4648 m (18.3 inches), and the diameter is 0.0254 m 

(1 inch). In the experiments, the axial strain is measured 0.127 m (5 inches) below the 

impacted (top) surface of the striking anvil. Assuming linear elastic behavior and 

homogenous deformation (constant strain over the entire cross-section), the strain is 

converted into axial stress and ultimately into an equivalent axial load. This value for the 

axial force is used and compared to the numerical data.  

 

The effect of a tapered end cone on the impacting rod is investigated and the 

corresponding results summarized. In the selected geometry, the diameter of the 

impacting anvil reduces from the original 0.0254 m (1 inch) to 0.00635 m (0.25 inches) at 

the front end of the cone.   

 

We again specify the applied load through the superposition of two half sine stress waves 

to best simulate the experimental impact wave as measured by the strain gage sensor 

located on the impacting anvil. The elastic and plastic material model parameters are 

unchanged and have been given before.  

 

Figure 6-12 compares the time histories of the experimental data (red line) and the 

numerical results (blue line) for the axial load recorded 0.0127 m (5 inches) below the 

impacted surface of the anvil.  Figure 6-13 shows the time history of the incoming wave 

at the bottom of the rock specimen. For convenience, the stress has been converted into 

incoming force and is compared to the experimental data. Finally, in Figure 6-14, the 

axial displacements of the top surface of the anvil and at the strain gage location are 

shown.  After about six msec, the displacements levels off, as show in Figure 6-15. 

Finally, Figure 6-16 shows the amount of damage induced in the rock sample. The front 
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cone of impacting anvil has an aspect ratio of 1:4. The diameter of the impacting cone is 

0.00635 m (0.25 inches).  The shape and extension of the fractured volume agree fairly 

well with the experiments, see Figure 6-6. 

 
Figure 6-12. Comparison of experimental (red) and numerical values (blue) of axial impact force at 

measurement location 
 

 
Figure 6-13. Time history of incoming force recorded at the bottom of the rock specimen 
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Figure 6-14. Time history of the axial displacements of the anvil recorded at the top surface (red line) 

and at the strain gage location (blue line) 
 

 
Figure 6-15. Axial displacement of top surface and at the strain gage location of the impacting anvil 
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Figure 6-16. Contour plot of the plastic strain distribution in Berea sandstone 

 

 

6.3 Full Scale Drilling simulation 

In this simulation, a cyclic impacting force with constant maximum amplitude is applied 

to the bottom surface of the borehole and the accumulation of damage monitored. The 

impacting force has a sinusoidal shape, i.e. it starts at zero, increases to the maximum 

level and returns to zero. The maximum amplitude and impact duration are flexible and 

to be given as input parameters. Following the application and removal of the impacting 

force, a user defined time interval is inserted before the next impact occurs. During cyclic 

loading the rock is subjected to fatigue, which induces a reduction of the initial strength 

properties. Therefore, cyclic loading softens the material until a condition is reached 

whereby the impacting force becomes equal to the strength properties of the rock. At this 

point plastic damage accumulates and, upon reaching a critical level, the material fails in 

shear or by reaching the tensile strength.   

6.3.1 Geometry and Boundary Conditions 

The geometry of the model is a vertical cylinder with circular cross section. The total 

height of the numerical model is three meters, the outside radius equal to 0.3937 meters 

and the radius of the borehole at its center is 0.1079 meters. The cylindrical vertical 
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borehole at the center of the rock sample has an initial depth of 0.1 meters. The applied 

boundary conditions are a constant lateral confinement, and overburden pressure equal to 

24.138 MPa and fixed displacement degrees of freedom on the bottom surface. The fluid 

pressure inside the borehole is equal to 8 MPa; the pressure at the bottom surface, 

including the weight of the drill bit is 15.7 MPa. The initial geometry, the boundary 

conditions and the deformation during loading maintain cylindrical symmetry. Therefore, 

to reduce computational time, we reduce the model to a 10° wedge, as shown in Figure 

6-17 and Figure 6-18. 

 

 
Figure 6-17: Geometric layout, and initial vertical stress distribution of the 3-D drilling simulation.  
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Figure 6-18: Detailed view of impact area and borehole.  

 

6.3.2 Loading and Failure 

A cyclic impacting force with constant maximum amplitude is applied to the bottom 

surface of the borehole and the accumulation of damage monitored. The impacting force 

has a sinusoidal shape, i.e. it starts at zero, increases to the maximum level and returns to 

zero. The maximum amplitude and impact duration are flexible and given as input 

parameters. During cyclic loading the rock is subjected to fatigue, which induces a 

reduction of the initial strength properties. Therefore, cyclic loading softens the material 

until a condition is reached whereby the impacting force becomes equal to the strength 

properties of the rock. At this point, plastic damage accumulates and, upon reaching a 

critical level, the material fails in shear or by reaching the tensile strength. 

 

Each impacting impulse has a duration of 0.025 seconds, which is followed by a 

separation time to the next impact of 0.025 seconds. This corresponds to a loading 

frequency of 20 Hz. The cyclic loading pattern is then characterized by a period of 0.05 

seconds; the first two cycles are shown in Figure 6-19. 
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Figure 6-19: Applied load as a function of time applied to the bottom surface of the borehole, 

duration of impact and separation time.  
 

The loading is designed to induce damage in the material and to reach one of the limiting 

criteria for failure. Three failure modes are possible: 

1. The total strain reaches the critical value of 0.05. 

2. The stress paths hit the yield surface, plastic strain accumulates and there 

again, a critical value of 0.05 induces failure. 

3. The last failure criterion, which the code verifies, is failure in tension. 

When the material reaches the ultimate tensile stress of 1.2 MPa, it fails. 

 

Failure of the material element implies removal of the element. Thus, whenever one of 

the three criteria listed above is satisfied, the uppermost layer in the borehole will be 

deleted and the drill advances. This determines the rate of penetration, i.e. the depth of 

the borehole as a function of drill time. We point out that in this particular example the 

tensile failure surface has been deactivated to improve interpretation of numerical results. 

Thus, only the first two failure criteria are active. 
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6.3.3 Results and Discussions 

Figure 6-20 and Figure 6-21 show the reduction in the material cohesion and friction 

angle due to fatigue immediately below the impacted surface and before the damaged 

layers are removed at 30.83 seconds (corresponding to 617 impacts). In particular, the top 

layers fail because the critical plastic strain in shear of 5 percent is reached, see Figure 

6-22.  

 

 
Figure 6-20: Change in cohesion (Pa) below the borehole due to fatigue damage at 30.83 seconds after 

initiation of drilling.  
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Figure 6-21: Change in the angle of friction below the borehole due to fatigue damage at 30.83 

seconds after initiation of drilling. 
 

 
Figure 6-22: Contour plot of plastic strain distribution below the borehole due to fatigue damage at 
30.83 seconds after initiation of drilling. The limit of 5% is reached in one element and the layer is 

about to fail. 
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Figure 6-23 shows the plastic strain distribution immediately after the top three layers 

have been removed following 617 impacts. Note that the damaged expressed in terms of 

plastic strain is obviously much smaller now. After a total of 1097 impacts, 

corresponding to 54.88 seconds after initiation of drilling, three additional layers are 

removed, as shown in Figure 6-24. Finally, Figure 6-25 shows the state of the rock 

sample after 1674 impacts at 83.71 seconds after initiation of drilling. Three additional 

layers have been removed. Figure 6-26 shows the rate of penetration for this simulation. 

The total duration of the drilling simulation is 83.71 seconds, which corresponds to 1674 

impacts. The depth of the borehole increased from the original 0.1 meter to 0.3148 meter. 

This corresponds to a rate of penetration of 0.0026 m/sec. The calculated rate of 

penetration is higher (by a factor of 4.5) compared to the one determined from 

experiments (0.00057 m/sec). 

 

 
Figure 6-23: Contour plot of plastic strain distribution below the borehole after removal of top three 

layers. Time is 30.87 seconds after initiation of drilling.  
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Figure 6-24: Contour plot of plastic strain distribution below the borehole after removal of 
additional three layers. Time is 54.88 seconds after initiation of drilling (1097 impacts).  

   

 
Figure 6-25: Contour plot of plastic strain distribution below the borehole at 83.71 seconds after 

initiation of drilling (1674 impacts). A total of nine layers have been removed since start of drilling. 
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Figure 6-26: The increase of depth of the borehole as a function of time. The total time of the 

simulation is 83.71 seconds (1674 impacts). This corresponds to a ROP of 0.0026 m/sec. 
 

 

6.4 Model Limitations 

For the single impact programs, the inputs have to be two superposed waves, i.e. one 

tensile wave and one compressive wave, in order to match the test results.  We think this 

is an appropriate wave form, comparing to the reality where the reflected compressive 

wave will be slower to reach the strain gauge location than the tensile wave generated 

after the hammer impact wave reaches the rod end.   

 

The great challenge to the full scale percussion drilling simulation lies in the running time 

required to complete the simulation.  In order to speed up the simulation, we propose a 

single column edge model rather than a 3D cylindrical model.  The target ROP from one 

hammer drilling test is 5.6727E-4 m/sec (6.7 ft/hour). The frequency of impact is 20 Hz, 

which corresponds to a period of 0.05 sec.   The height of each element in the simulation 

model is 0.0125 m.  For this geometry, the maximum time step is about 3.5E-6, beyond 

which the solution becomes unstable.  However, with such small timestep, the simulation 
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takes about 36.7257 hours for the first layer to be eliminated.  The computational 

requirements are substantial and simulations shown here easily run over several days. 

 

The stability of FLAC3D poses a significant challenge, being that the model becomes 

unstable after the simulation timesteps reach certain limits.  Extreme carefulness is 

needed to reach the balance between the model stability and running time.  

 

7 SUMMARY OF FINDINGS AND DELIVERIES 
Instead of compiling the information contained in previous quarterly or technical reports, 

this report focuses more on the descriptions of tasks, findings, and conclusions, as well as 

the efforts on promoting percussion drilling technologies to industries including site 

visits, presentations, and publications.  As a part of the final deliveries, the 3D numerical 

model for rock mechanics is also attached.   

 

After intensive reviews of rock drilling in different industries, a concept drilling model is 

proposed for numerical simulations.  Three main processes involved in percussion 

drilling are summarized, including drillbit penetration with compression, rotation and 

percussion, rock response with stress propagation, damage accumulation and failure, and 

debris transportation inside the annulus after disintegrated from rock.   

 

7.1 Rock Penetration in Percussion Drilling   

After receiving impacts, rock may be damaged or failed in three ways: rock crushing by 

compressive bit load, rock fracturing by both shearing and tensile forces, and rock fatigue 

by repetitive compression-tension type of loading.  Possible theoretical candidates, 

including stress wave theory, damage mechanics, elastoplastic continuum stress theory, 

are proposed for theoretical development of rock defragmentation, along with some 

empirical correlations.  Based on a numerical tool, FLAC3D, percussion drilling is 

simulated. The main features include a Strain Softening (SS) material model to describe 

rock constitutive behaviors, various failure criteria to determine when, where, and how 

rock fails after post-yield state, such as strain-based failure criteria (critical strain criteria, 

critical shear plastic strain criteria) and tensile criteria, a Rayleigh damping feature to 
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dissipate excessive oscillation energy, and a fatigue/damage algorithm to update rock 

properties due to cyclic loading. 

 

 
Figure 7-1. Cuttings from drilling tests (Left: roller cone; Middle: hammer underbalance; Right: 

penny coin) 
 

Model simulation indicates that compressive failure due to high impact force may be 

dominant rock failure during bit-rock contact, while rock may fail in tension if there is 

not enough bottom hole pressure acting on the exposed rock surface.  Because rock 

tensile strength is usually 1/5 to 1/10 of rock compressive strength, it may fail more 

easily in tension if conditions permit.  For instance, tensile failure can account for up to 

90 percent of rock penetration when there is no pressure acting on top of the rock at the 

hole bottom.  To achieve the maximum drilling efficiency, encouraging rock deforming 

in tension is recommended. Lab tests also confirm the significance of tensile failure when 

BHP is low.  For example, when drilling underbalance, ROP can be as high as 36.6m/hr 

(120ft/hr), more than 10 times higher than the ROP under 6.89MPa (1000psi) 

overbalanced conditions.  When analyzing the difference between the cuttings generated 

from a traditional roller-cone drill bit and an under-balanced percussion hammer, as 

shown in the Figure 7-1, significant difference can be found.  The cuttings generated by 

the roller-cone bit (left in the picture) is bulky with round edges, which means they are 
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created by shear due to bit rotation.  In comparison, the cuttings from hammer bit is flat 

and thin, indicating that tensile failure may be dominant since the hammer cutters are 

spherical without any sharp edge. 

 

Another interesting finding from the single impact lab tests is how rock penetration 

responds to repetitive loadings.  Three impacts are loaded on the same location on top of 

the rock surface.  After each impact, the debris is cleaned and rinsed with water, and the 

depth and width of craters are measured.  Plotting the penetration depth against the 

number of loadings in Figure 7-2, we can clearly see a different trend of penetration 

performance between Mancos shale and Berea sandstone. For Berea sandstone, the crater 

depth after each impact increases with number of impacts (except the third one at 0 psi 

fluid pressure, which may be an abnormal test point).  This is in agreement with the 

model assumption that rock becomes weaker (fatigue) due to cyclic loading.  However, 

for Mancos shale (dash lines in Figure 7-2), the crater depth decreases with number of 

impacts.  Since the energy level of each impact is constant, this indicates the rock, instead 

of being weakened by repetitive loadings, is actually stronger than its original state.  We 

believe the discrepancy results from the rock structures.  Berea sandstone is a porous 

(porosity is 20.5 percent) and medium strength rock (UCS is 45.9MPa), whose particles 

more easily move upon loading.  Micro-fissures are easily introduced while particles shift 

and loading force increases.  Mancos shale is a compacted (porosity is 7.9 percent), 

highly layered rock with higher strength (UCS is 55.7MPa).  When hammer impacts the 

shale, the shale particles are more likely crushed into smaller particles instead of moving 

to a porous space.   Crushed particles, as a new material, have more strength and higher 

density than their original combinations, which explains why rock becomes stronger after 

each loading.  
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Figure 7-2.  Rock penetration vs. repetitive loadings 

 

Also it should be noted that the indentations created by the first impact in Mancos shale 

are higher than those in Berea sandstone.  This is mainly because layered structure of the 

shale facilitates rock tensile failure even though it is stronger than Berea sandstone in 

compression.  The chips can more easily detach from the rock matrix due to the low 

cohesion between layers.  To avoid crushing particles and encourage rock tensile failure, 

bit needs to rotate to help cutters find next fresh rock surface.  Too slow or too fast 

rotation may limit hammer performance in the shale because of the compacting effect 

discussed above. 

 

These findings are one of many examples that demonstrate the complexity of percussion 

drilling.  Hammer performance is not only related to the percussive energy level that the 

hammer creates, but also the cutter and bit design, the rock strength and moduli, and also 

closely to the rock structure.   Different types of rocks may have the same strength and 

moduli, but hammer may perform quite differently because of the difference in rock 

structures.  In our case, even though Mancos shale is more competent and stronger than 

Berea sandstone, the hammer performs better in the drilling simulator (Figure 7-3).  
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Figure 7-3.  ROP data for a hammer drilling in Berea Sandstone and Mancos Shale, and for a 
baseline roller-cone Bit in Berea Sandstone  

 

 

7.2 Cuttings Transport and Mud Circulation   

With fluid dynamics coupled with particle mechanics, cuttings transport is investigated 

both at macroscopic and microscopic levels. Fluid dynamics is coupled with particle 

mechanics so that not only macroscopic fluid behavior but the effect of solid particles on 

mud flow at microscopic level can be described either as a Newtonian or non-Newtonian, 

laminar or turbulent flow. 

 

There are numerous factors related to cuttings transport such as pump rate, fluid viscosity 

(currently Newtonian rheology active), density, particle shape and mass, rotation rate, 

penetration rate, type of flow regime, etc.  It is well known that an increase of mud 

circulation rate and/or increased mud viscosity can lead to improvement of cuttings 

transport efficiency.  However, the effect of pipe rotation is also important. The rotation 

of the pipe is mainly found to mix the cuttings with mud into a homogenous fluid for 

efficient cuttings circulation.  Without enough entry speed, i.e. mud circulation rate, most 

cuttings will fall down to the bottom of the annulus after a short lift, due to the effect of 
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gravity.   One big advantage of this simulation tool is to three-dimensionally visualize 

and quantify, with the presence of pipe rotation, how efficient mud circulation could be to 

remove drilling cuttings, and therefore to setup operation guidelines for field engineers.   

 

7.3 Recommendations for Future Research 

The developments documented above significantly advance the fundamental 

understandings of the physical mechanisms involved in percussive-rotary drilling, and 

thereby may facilitate more efficient and lower cost drilling and exploration of hard-rock 

reservoirs. 

 

Realizing the complexity of percussion drilling, however, we recommend to further study 

the following issues that are critical to the drilling simulations. 

 

For Simulation Work 

First, investigate rock compaction phenomenon due to cyclic loading on the same 

location.  A rock strength/modulus enhancement model needs to develop based on 

lab data, along with rock weakening model for porous rock.  

Secondly, develop a more complete constitutive equation for rock failure to 

include rotation of principal axis during impact.  

Lastly, include a real 3D hammer tool module with manufacture specifications of 

hammer pressure and operations.  The tool module is expected to couple with the 

rock module in a way that it provides impact velocity/force for rock module input 

and receives resistance to slow down the impact.  The operation specifications 

and hammer internal structure have to be specified in order to carry out the 

modeling efforts.   

 

For Lab Test 

Mancos shale used in the tests is strong but friable, which exhibits little ductile 

behavior that typical shale usually does.  Because of friable layers, the shale is 

more easily failed in tension, which has been confirmed by cuttings collected after 

the tests.  This may partially explain why mud hammer performs better in Mancos 
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shale than in Berea sandstone.  For future research, typical ductile shale is 

recommended to investigate hammer performance and explain why, in reality, 

mud hammer generally performs poorly in shale formations.   

 

Besides choosing more typical shale as testing material, we recommend to further 

investigate the effect of pore pressure in the shale.  To saturate low permeability 

shale, weeks or even months are needed.  Due to the time constraints on saturating 

the shale samples, the pore pressure in Mancos shale has not been elevated to the 

insitu conditions.  When hammer impacts the rock, the pore space is squeezed so 

that the fluid pressure may increase.  This is particularly the case around the bit-

rock contacts.  The increased pressure may reduce the impact force and help to 

push the rock into the wellbore, facilitating the rock tensile failure to a great 

extent when the bit retreats.    

 

Currently, the load measurement is at the bit tip while the displacement is at the 

top (two feet away).  Due to the complex geometry of the rod, it is very 

challenging to relate displacement with load so that the energy level, defined by 

the load-displacement curve, can be determined.  Therefore we recommend load 

and displacement (or stress and strain) should be measured at the same location in 

the future single impact tests.   

 

As a promising drilling technology, percussion drilling has been demonstrated in mining 

and other industries to be capable of drilling fast and efficiently, especially in hard rocks.  

In oil and gas industries, however, it still faces a lot of challenges even though 

tremendous improvements and innovations have been achieved within the past two 

decades.  This is mainly because the unique environment hammer is expected to operate, 

including versatile rock types (e.g. ductile shale), deep depth, high pressure environment, 

and the existence of mud and fluid.  With increasing demand of oil and gas and drilling 

deep for wells, more efforts and devotions are needed to improve the current hammer 

capacity and meet the challenges.   
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7.4 Site Visit, Presentations and Publications   

During the course of the project, Terralog has consistently pursued the exposure of the 

technologies and collaborations with industries, through site visits, presentations at 

conferences, and publications.  The detailed lists are: 

1. On Feb. 12, 2004, Dr. Mike Bruno presented at National Energy Technology 

Lab of Department of Energy in Pittsburgh, PA. 

2. In April 2004, TTI received a visit from Prof. Marian Wiercigroch at the 

University of Aberdeen (UK) to critically review the theoretical development 

and exchange info in the research.  

3. From April 25th to the 27th, 2004, Dr. Gang Han visited TerraTek at Salt 

Lake City, where Smith Bits carried out a series of full-scale hammer tests.  

He closely observed two sets of hammer tests with different mud densities and 

BHPs, gathered laboratory data for PD applications, such as hammer 

frequency, WOB, RPM, torque on pipe, mud flow rate, etc. He collected 

cuttings samples from a sandstone and photographed the hammered rock after 

the tests. 

4. On April 27th,  2004, Dr. Gang Han attended a 2-hour conference with Mr. 

Shantanu Swadi and Mr. Justin Scott at Smith Bits; Mr. Sidney Green, Dr. 

Arnis Judzis, Mr. Alan Black of TerraTek; and Dr. David Pixton at NovaTek. 

He discussed technical details of and experimental challenges during PD, and 

presented some TTI simulation results with positive and useful feedbacks. 

5. On June 7th, 2004, Dr. Mike Bruno visited and presented at Smith Bits in 

Houston. 

6. From June 28th to Sept. 30, 2004, TTI received a visit from a PhD student, Mr. 

Joe Emans, from the University of Aberdeen (UK), for working on dynamic 

modeling of percussion drilling.  

7. On Oct 14, 2004, Dr. Mike Bruno visited and presented at National Energy 

Technology Lab of Department of Energy in Morgantown, WVa. 

8. Nov. 17, 2004, Dr. Mike Bruno and Dr. Arnis Judzis (of TerraTek) convened 

a colloquium on percussion drilling and single cutter impact tests in Houston 
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with invited guests from industry asked to provide observations and 

suggetions on the projects and industry’s interests in the project. 

9. In Dec. 2004, Dr. Mike Bruno published a paper, Advanced Simulation 

Technology for Combined Percussion and Rotary Drilling and Cuttings 

Transport, at GasTips.  The full reference is:  Bruno, M., Han, G.,and 

Honeger, C., Winter 2004.  Advanced Simulation Technology for Combined 

Percussion and Rotary Drilling and Cuttings Transport, GasTips, 11(1): 5-8. 

10. On Feb. 16th, 2005, Dr. Gang Han visited TerraTek, gathered the single 

impact data from previous tests on Carthage Marble and Crab Orchard 

sandstones.  Discussions with Mr. Sidney Green, Dr. Arnis Judzis, and Mr. 

Alan Black helped to start the single impact simulations.  

11. In April 2005, Dr. Gang Han presented a paper, Percussion Drilling in Oil 

Industry: Review and Rock Failure Modeling, at 2005 AADE National 

Technical Conference & Exhibition in Houston, Texas.  The full reference of 

the paper is: Han, G., Bruno, M., and Lao, K., April 2005.  Percussion drilling 

in oil industry: review and rock failure modeling, AADE-05-NTCE-59, 2005 

AADE National Technical Conference & Exhibition, Houston, TX. 

12. In June 2005, Dr. Gang Han presented a paper, Dynamically Modelling Rock 

Failure in Percussion Drilling, at the annual symposium of American Rock 

Mechanics Association in Anchorage, Alaska.  The full reference is:  Han, G., 

Bruno, M., and Dusseault, M.B., Jun 25-29, 2005. Dynamically modelling 

rock failure in percussion drilling, ARMA/USRMS 05-819, The 40th US 

Rock Mechanics Symposium, Anchorage, Alaska, USA. 

13. From Jul. 17th to 22nd, Dr. Gang Han visited TerraTek and witnessed the full 

scale hammer drilling tests and part of the single impact tests.  He met with 

Mr. Tim Grant at Department of Energy; Mr. Lance Underwood and Mr. 

Shantanu Swadi at SmithBits; and Mr. Sidney Green, Dr. Arnis Judzis, and 

Mr. Alan Black from TerraTek.   

14. From Aug. 22nd to Aug. 23rd, Dr. Gang Han visited TerraTek and witnessed 

the remaining single impact tests, along with Dr. William Thomas, Dr. Rao 

Bangaru, and Dr. Michael Luton from ExxonMobil.  He also presented to the 
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industry the current status and modeling efforts at a joint meeting following 

the tests.  

15. On April 19, 2006, Dr. Gang Han presented the final report to Department of 

Energy at Morgantown, WV. 

16. In June, 2006, Dr. Gang Han will present a technical paper, Lab Investigations 

of Percussion Drilling: from Single Impact to Full Scale Fluid Hammer, at 

2006 ARMA, held at Colorado School of Mines. Paper #ARMA962. 

17. In Dec. 2006, Dr. Gang Han will present a technical paper, Percussion 

Drilling: from Lab Tests to Dynamic Modeling at the SPE International Oil & 

Gas Conference and Exhibition in China, SPE 104178. 

 

7.5 The Deliveries 

Along the path of this project, TTI has delivered three types of reports to DOE based on 

the contract requirements: Quarterly Technical Reports, Project Status Reports (Form 

DOE F 4600.6), and Financial Status Report (Form 269A).  More specifically, 

 

7.5.1 Quarterly Technical Reports 

Eight quarterly/monthly technical reports have been generated and submitted. 

 

Title   Period      Pages 

41999R01.doc  Jan. 01, 2004 to Mar 31, 2004   82 

41999R02.doc* April 01, 2004 to April 31, 2004  4 

41999R03.doc * May 01, 2004 to May 31, 2004  3 

41999R04.doc  July 01, 2004 to Sept 30, 2004  57 

41999R05.doc  Oct 01, 2004 to Dec 31, 2004   39 

41999R06.doc  Jan 01, 2005 to Mar 31, 2005   23 

41999R07.doc  April 01, 2005 to Aug 31, 2005  63 

41999R08.doc  Jan 01, 2004 to Sept 30, 2005  (this report) 101 

*: Monthly updates 
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7.5.2 Project Status Reports  

Seven quarterly reports on project status have been generated and submitted.  

 

Percussion_4600_6_033104.doc Jan 01, 2004 to Mar 31, 2004 

Percussion_4600_6_063004.doc April 01, 2004 to June 30, 2004 

Percussion_4600_6_093004.doc July 01, 2004 to Sept 30, 2004 

Percussion_4600_6_123104.doc Oct 01, 2004 to Dec 31, 2004 

Percussion_4600_6_033105.doc Jan 01, 2005 to Mar 31, 2005 

Percussion_4600_6_063005.doc April 01, 2005 to June 31, 2005 

Percussion_4600_6_093105.doc July 01, 2005 to Sept 31, 2005 

 

7.5.3 Financial Status Reports  

Eight financial status reports have been generated and submitted. 

 

DOE269A123103.doc   Oct 01, 2003 to Dec 31, 2003 

DOE269A033104.doc   Jan 01, 2004 to Mar 31, 2004 

DOE269A063004.doc   April 01, 2004 to June 30, 2004 

DOE269A093004.doc   July 01, 2004 to Sept 30, 2004 

DOE269A123104.doc   Oct 01, 2004 to Dec 31, 2004 

DOE269A033105.doc   Jan 01, 2005 to Mar 31, 2005 

DOE269A063005.doc   April 01, 2005 to June 30, 2005 

DOE269A093005.doc   July 01, 2005 to Sept 30, 2005 

 

7.5.4 Programs for rock mechanics simulations 

TTI also submitted the 3D numerical tools developed for rock simulation during 

percussion drilling processes.  The package includes two zip folders: 

Single_Impacts_3D.zip developed for single indentation simulations; and 

Hammer_Drilling_3D.zip developed for full scale percussion drilling simulations.   

 

To run the single impact programs, the user needs to: 
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1) Unzip all files in the Single_Impacts.zip into one folder.  There are a total of 10 files, 

including three programs (Main.dat, Geom_Var.fish, Hist_Var.dat) and seven result 

files from the programs (Displ_Match.jpg; Force_Match.jpg; input_2waves.jpg; 

input_final_load.jpg; Rock_Penetration_3D.jpg; Stress_RockBottom.jpg; 

Results.sav). 

2) Install FLAC3D with dynamic module 

3) Open FLAC3D, type “ca Main.dat”.  It will generate meshes, define variables, apply 

appropriate boundaries, and execute hammer impacts.  At the end of simulation, 

Results.sav file is generated and saved. 

 

To run the full scale drilling tests, the user needs to: 

1) Unzip all files in Drilling_Input.zip into one folder.  There are a total of nine files (8 

programs, 3D.dat; 3D_Geo_Cyl.dat; Failtest.fish; Fatigue.dat; hist_plot.dat; 

init_cyl.fish; Main_cyl.dat; numint.fish; and one save file, Geo3D_Cyl.sav) 

2) Install FLAC3D with dynamic module 

3) Open FLAC3D, type “ca 3D.dat”.  It will generate geometry, apply loading and 

boundary conditions, and carry out the simulations.  The .sav files in 

Drilling_Output.zip are the results saved after certain stage of simulations. 
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LIST OF ACRONYMS AND ABBREVIATIONS  
AADE American Association of Drilling Engineers 
ARMA American Rock Mechanics Association 
BHP Bottom Hole Pressure 
DEM Discrete Element Modelling 
DOE Department of Energy 
FEM Finite Element Modelling 
PD Percussion Drilling 
PDC Polycrystalline Diamond Composites 
ROP Rate of Penetration 
RPM Rotation per Minute 
TTI Terralog Technologies Inc (USA) 
UCS Uniaxial Compressive Strength 
WOB Weight on Bit 
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APPENDIX A: NUMERICAL PROGRAM FOR SINGLE IMPACT  
(Attached separately) 
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APPENDIX B: NUMERICAL PROGRAM FOR HAMMER 

DRILLING  
(Attached separately) 

 


